A polymer chain tethered to a surface may be compact or extended, adsorbed or desorbed, depending on interactions with the surface and the surrounding solvent. This leads to a rich phase diagram with a variety of transitions. To investigate these transitions we have performed Monte Carlo simulations of a bond fluctuation model with Wang–Landau and umbrella sampling algorithms in a two-dimensional state space. The simulations’ density-of-states results have been evaluated for interaction parameters spanning the range from good- to poor-solvent conditions and from repulsive to strongly attractive surfaces. In this work, we describe the simulation method and present results for the overall phase behavior and for some of the transitions. For adsorption in good solvent, we compare with Metropolis Monte Carlo data for the same model and find good agreement between the results. For the collapse transition, which occurs when the solvent quality changes from good to poor, we consider two situations corresponding to three-dimensional (hard surface) and two-dimensional (very attractive surface) chain conformations, respectively. For the hard surface, we compare tethered chains with free chains and find very similar behavior for both types of chains. For the very attractive surface, we find the two-dimensional chain collapse to be a two-step transition with the same sequence of transitions that is observed for three-dimensional chains: a coil-globule transition that changes the overall chain size is followed by a local rearrangement of chain segments.

1.
D. H.
Napper
,
Polymeric Stabilization of Colloidal Dispersions
(
Academic
,
London
,
1983
).
2.
P.
Nelson
,
Biological Physics: Energy, Information, Life
(
W. H. Freeman
,
New York
,
2004
).
3.
A.
Halperin
,
M.
Tirrell
, and
T. P.
Lodge
,
Adv. Polym. Sci.
100
,
31
(
1992
).
5.
C.
Ray
,
J. R.
Brown
, and
B. B.
Akhremitchev
,
J. Phys. Chem. B
110
,
17578
(
2006
).
6.
W.
Paul
,
T.
Strauch
,
F.
Rampf
, and
K.
Binder
,
Phys. Rev. E
75
,
060801
(
2007
).
7.
E.
Eisenriegler
,
Polymers Near Surfaces: Conformation Properties and Relation to Critical Phenomena
(
World Scientific
,
Singapore
,
1993
).
8.
T.
Vrbová
and
S. G.
Whittington
,
J. Phys. A
29
,
6253
(
1996
).
9.
T.
Vrbová
and
S. G.
Whittington
,
J. Phys. A
31
,
3989
(
1998
).
10.
T.
Vrbová
and
K.
Procházka
,
J. Phys. A
32
,
5469
(
1999
).
11.
Y.
Singh
,
D.
Giri
, and
S.
Kumar
,
J. Phys. A
34
,
L67
(
2001
).
12.
R.
Rajesh
,
D.
Dhar
,
D.
Giri
,
S.
Kumar
, and
Y.
Singh
,
Phys. Rev. E
65
,
056124
(
2002
).
13.
P. K.
Mishra
,
D. D.
Giri
,
S.
Kumar
, and
Y.
Singh
,
Physica A
318
,
171
(
2003
).
14.
J.
Krawczyk
,
A. L.
Owczarek
,
T.
Prellberg
, and
A.
Rechnitzer
,
Europhys. Lett.
70
,
726
(
2005
).
15.
A. L.
Owczarek
,
A.
Rechnitzer
,
J.
Krawczyk
, and
T.
Prellberg
,
J. Phys. A: Math. Theor.
40
,
13257
(
2007
).
16.
M.
Bachmann
and
W.
Janke
,
Phys. Rev. Lett.
95
,
058102
(
2005
).
17.
M.
Bachmann
and
W.
Janke
,
Phys. Rev. E
73
,
041802
(
2006
).
18.
S.
Metzger
,
M.
Müller
,
K.
Binder
, and
J.
Baschnagel
,
J. Chem. Phys.
118
,
8489
(
2003
).
19.
I.
Carmesin
and
K.
Kremer
,
Macromolecules
21
,
2819
(
1988
).
20.
K.
Binder
,
Monte Carlo and Molecular Dynamics Simulations in Polymer Science
(
Oxford University Press
,
Oxford
,
1995
).
21.
D. P.
Landau
and
K.
Binder
,
A Guide to Monte Carlo Simulations in Statistical Physics
(
Cambridge University
,
Cambridge
,
2000
).
22.
S. Z. D.
Chen
and
B.
Lotz
,
Polymer
46
,
8662
(
2005
).
23.
K.
Binder
and
W.
Paul
,
J. Polym. Sci., Part B: Polym. Phys.
35
,
1
(
1997
).
24.
J.
Baschnagel
,
K.
Binder
,
P.
Doruker
,
A. A.
Gusev
,
O.
Hahn
,
K.
Kremer
,
W. L.
Mattice
,
F.
Müller-Plathe
,
M.
Murat
,
W.
Paul
,
S.
Santos
, and
U. W.
Suter
,
Adv. Polym. Sci.
152
,
41
(
2000
).
25.
K.
Binder
,
J.
Baschnagel
,
M.
Müller
,
W.
Paul
, and
F.
Rampf
,
Macromol. Symp.
237
,
128
(
2006
).
26.
E.
Eisenriegler
,
K.
Kremer
, and
K.
Binder
,
J. Chem. Phys.
77
,
6296
(
1982
).
27.
K.
De’Bell
and
T.
Lookman
,
Rev. Mod. Phys.
65
,
87
(
1993
).
28.
S.
Metzger
,
M.
Müller
,
K.
Binder
, and
J.
Baschnagel
,
Macromol. Theory Simul.
11
,
985
(
2002
).
29.
R.
Descas
,
J.-U.
Sommer
, and
A.
Blumen
,
J. Chem. Phys.
120
,
8831
(
2004
).
30.
Y.
Zhou
,
C. K.
Hall
, and
M.
Karplus
,
Phys. Rev. Lett.
77
,
2822
(
1996
).
31.
Y.
Zhou
,
M.
Karplus
,
J. M.
Wichert
, and
C. K.
Hall
,
J. Chem. Phys.
107
,
10691
(
1997
).
32.
F.
Rampf
,
W.
Paul
, and
K.
Binder
,
Europhys. Lett.
70
,
628
(
2005
).
33.
F.
Wang
and
D. P.
Landau
,
Phys. Rev. E
64
,
056101
(
2001
).
34.
D. P.
Landau
,
S.-H.
Tsai
, and
M.
Exler
,
Am. J. Phys.
72
,
1294
(
2004
).
35.
C.
Zhou
,
T. C.
Schulthess
,
S.
Torbrügge
, and
D. P.
Landau
,
Phys. Rev. Lett.
96
,
120201
(
2006
).
36.
E. A.
Mastny
and
J. J.
de Pablo
,
J. Chem. Phys.
122
,
124109
(
2005
).
37.
A.
Tröster
and
C.
Dellago
,
Phys. Rev. E
71
,
066705
(
2005
).
38.
F.
Rampf
,
K.
Binder
, and
W.
Paul
,
J. Polym. Sci., Part B: Polym. Phys.
44
,
2542
(
2006
).
39.
B. A.
Berg
and
T.
Celik
,
Phys. Rev. Lett.
69
,
2292
(
1992
).
40.
A.
Mitsutake
,
Y.
Sugita
, and
Y.
Okamoto
,
Biopolymers
60
,
96
(
2001
).
41.
W.
Janke
, in
Computer Simulations of Surfaces and Interfaces
,
Science Series II
Vol.
114
edited by
B.
Dünweg
,
D. P.
Landau
, and
A. I.
Milchev
(
Kluwer
,
Dordrecht, The Netherlands
,
2003
), pp.
137
157
.
42.
M. E. J.
Newman
and
G. T.
Barkema
,
Monte Carlo Methods in Statistical Physics
(
Clarendon
,
Oxford
,
1999
).
43.
H. B.
Callen
,
Thermodynamics and an Introduction to Thermostatistics
, 2nd ed. (
Wiley
,
New York
,
1985
).
44.
A.
Milchev
,
W.
Paul
, and
K.
Binder
,
J. Chem. Phys.
99
,
4786
(
1993
).
45.
H.
Liang
and
H.
Chen
,
J. Chem. Phys.
113
,
4469
(
2000
).
46.
M. P.
Taylor
,
J. Chem. Phys.
114
,
6472
(
2001
).
47.
F.
Calvo
,
J. P. K.
Doye
, and
D. J.
Wales
,
J. Chem. Phys.
116
,
2642
(
2002
).
48.
J. R.
Maury-Evertsz
,
L. A.
Estévez
, and
G. E.
López
,
J. Chem. Phys.
119
,
9925
(
2003
).
49.
D. F.
Parsons
and
D. R. M.
Williams
,
J. Chem. Phys.
124
,
221103
(
2006
).
50.
D. F.
Parsons
and
D. R. M.
Williams
,
Phys. Rev. E
74
,
041804
(
2006
).
51.
D. T.
Seaton
,
S. J.
Mitchell
, and
D. P.
Landau
, “
Developments in Wang-Landau Simulations of a Simple Continuous Homopolymer
,”
Braz. J. Phys.
(in press).
52.
R.
Hentschke
,
L.
Askadskaya
, and
J. P.
Rabe
,
J. Chem. Phys.
97
,
6901
(
1992
).
53.
T.
Arnold
,
R. K.
Thomas
,
M. A.
Castro
,
S. M.
Clarke
,
L.
Messe
, and
A.
Inaba
,
Phys. Chem. Chem. Phys.
4
,
345
(
2002
).
54.
Y.
Wang
,
S.
Ge
,
M.
Rafailovich
,
J.
Sokolov
,
Y.
Zou
,
H.
Ade
,
J.
Lüning
,
A.
Lustiger
, and
G.
Maron
,
Macromolecules
37
,
3319
(
2004
).
55.
G.
Reiter
and
J.-U.
Sommer
,
J. Chem. Phys.
112
,
4376
(
2000
).
56.
J.-U.
Sommer
and
G.
Reiter
,
J. Chem. Phys.
112
,
4384
(
2000
).
You do not currently have access to this content.