We present NMR signals from a strongly coupled homonuclear spin system, H1 nuclei in adamantane, acquired with simultaneous two-photon excitation under conditions of the Lee-Goldburg experiment. Small coils, having inside diameters of 0.36mm, are used to achieve two-photon nutation frequencies of 20kHz. The very large rf field strengths required give rise to large Bloch-Siegert shifts that cannot be neglected. These experiments are found to be extremely sensitive to inhomogeneity of the applied rf field, and due to the Bloch-Siegert shift, exhibit a large asymmetry in response between the upper and lower Lee-Goldburg offsets. Two-photon excitation has the potential to enhance both the sensitivity and performance of homonuclear dipolar decoupling, but is made challenging by the high rf power required and the difficulties introduced by the inhomogeneous Bloch-Siegert shift. We briefly discuss a variation of the frequency-switched Lee-Goldburg technique, called four-quadrant Lee-Goldburg (4QLG) that produces net precession in the x-y plane, with a reduced chemical shift scaling factor of 13.

1.
A. E.
Bennett
,
C. M.
Rienstra
,
M.
Auger
,
K. V.
Lakshmi
, and
R. G.
Griffin
,
J. Chem. Phys.
103
,
6951
(
1995
).
2.
G.
de Paëpe
,
A.
Lesage
, and
L.
Emsley
,
J. Chem. Phys.
119
,
4833
(
2003
).
3.
A.
Detken
,
E.
Hardy
,
M.
Ernst
, and
B.
Meier
,
Chem. Phys. Lett.
356
,
298
(
2002
).
4.
M.
Carravetta
,
M.
Edén
,
X.
Zhao
,
A.
Brinkmann
, and
M.
Levitt
,
Chem. Phys. Lett.
321
,
205
(
2000
).
5.
K.
Riedel
,
J.
Leppert
,
O.
Ohlenschläger
,
M.
Görlach
, and
R.
Ramachandran
,
Chem. Phys. Lett.
395
,
356
(
2004
).
6.
M.
Lee
and
W. I.
Goldburg
,
Phys. Rev.
140
,
A1261
(
1965
).
7.
M.
Mehring
and
J. S.
Waugh
,
Phys. Rev. B
5
,
3459
(
1972
).
8.
E.
Vinogradov
,
P.
Madhu
, and
S.
Vega
,
Chem. Phys. Lett.
354
,
193
(
2002
).
9.
J. S.
Waugh
,
L. M.
Huber
, and
U.
Haeberlen
,
Phys. Rev. Lett.
20
,
180
(
1968
).
10.
U.
Haeberlen
and
J. S.
Waugh
,
Phys. Rev.
175
,
453
(
1968
).
11.
P.
Mansfield
,
J. Phys. C
4
,
1444
(
1971
).
12.
W.-K.
Rhim
,
D. D.
Elleman
, and
R. W.
Vaughan
,
J. Chem. Phys.
59
,
3740
(
1973
).
13.
D.
Burum
and
W.-K.
Rhim
,
J. Chem. Phys.
71
,
944
(
1979
).
14.
D.
Cory
,
J. Magn. Reson. (1969-1992)
94
,
526
(
1991
).
15.
D.
Sakellariou
,
A.
Lesage
,
P.
Hodgkinson
, and
L.
Emsley
,
Chem. Phys. Lett.
319
,
253
(
2000
).
16.
B.
Elena
,
G.
de Paëpe
, and
L.
Emsley
,
Chem. Phys. Lett.
398
,
532
(
2004
).
17.
A.
Lesage
,
D.
Sakellariou
,
S.
Hediger
,
B.
Elena
,
P.
Charmont
, and
S.
Steuernagel
,
J. Magn. Reson.
163
,
105
(
2003
).
18.
C. A.
Michal
,
J. Chem. Phys.
118
,
3451
(
2003
).
19.
P.
Eles
and
C. A.
Michal
,
J. Chem. Phys.
121
,
10167
(
2004
).
20.
A.
Bielecki
,
A. C.
Kolbert
, and
M. H.
Levitt
,
Chem. Phys. Lett.
155
,
341
(
1989
).
21.
E.
Vinogradov
,
P.
Madhu
, and
S.
Vega
,
Chem. Phys. Lett.
314
,
443
(
1999
).
22.
E.
Vinogradov
,
P.
Madu
, and
S.
Vega
,
J. Chem. Phys.
115
,
8983
(
2001
).
23.
L.
Bosman
,
P.
Madhu
,
S.
Vega
, and
E.
Vinogradov
,
J. Magn. Reson.
169
,
39
(
2004
).
24.
A.
Abragam
,
Principles of Nuclear Magnetism
(
Oxford University Press
,
Oxford
,
1961
).
25.
F.
Bloch
and
A.
Siegert
,
Phys. Rev.
57
,
522
(
1940
).
26.
C.
Michal
,
Rev. Sci. Instrum.
73
,
453
(
2002
).
You do not currently have access to this content.