In the time-independent multimode approach for the determination of vibronic spectra involving strongly coupled electronic states, the equilibrium geometry and normal modes of the reference or precursor state are usually employed as the basis for the multimode expansion. This basis, while easily constructed, is generally ill-suited for determining the eigenstates of the observed species. Employing a more computationally effective basis requires the evaluation of Franck-Condon overlap integrals. Using established generalized Hermite polynomial generating function formalisms, an algorithm is developed that can efficiently determine the enormous requisite number of these overlap integrals. It is found that this flexibility in the choice of multimode basis can significantly reduce the size of the basis needed to obtain converged spectral simulations. The previously reported spectrum of the ethoxy (C2H5O) radical serves as an example of the efficacy of the new technique.

1.
H.
Köppel
,
W.
Domcke
, and
L. S.
Cederbaum
,
Adv. Chem. Phys.
57
,
59
(
1984
).
2.
H.
Köppel
,
W.
Domcke
, and
L. S.
Cederbaum
, in
Conical Intersections
, edited by
W.
Domcke
,
D. R.
Yarkony
, and
H.
Koppel
(
World Scientific
,
New Jersey
,
2004
), Vol.
15
, p.
323
.
3.
M.
Nooijen
,
Int. J. Quantum Chem.
95
,
768
(
2003
).
4.
T.
Ichino
,
A. J.
Gianola
,
W. C.
Lineberger
, and
J. F.
Stanton
,
J. Chem. Phys.
125
,
084312
(
2006
).
5.
L.
Pauling
and
E. B.
Wilson
,
Introduction to Quantum Mechanics
(
McGraw-Hill
,
New York
,
1935
).
6.
M. S.
Schuurman
,
R. A.
Young
, and
D. R.
Yarkony
,
Chem. Phys.
(in press, available online).
7.
M. S.
Schuurman
,
D. E.
Weinberg
, and
D. R.
Yarkony
,
J. Chem. Phys.
127
,
104309
(
2007
).
8.
M. S.
Schuurman
and
D. R.
Yarkony
,
J. Chem. Phys.
127
,
094104
(
2007
).
9.
T. E.
Sharp
and
H. M.
Rosenstock
,
J. Chem. Phys.
41
,
3453
(
1964
).
10.
H.
Kupka
and
P. H.
Cribb
,
J. Chem. Phys.
85
,
1303
(
1986
).
11.
L. S.
Cederbaum
and
W.
Domcke
,
J. Chem. Phys.
64
,
603
(
1976
).
12.
E. V.
Doktorov
,
I. A.
Malkin
, and
V. I.
Man’ko
,
J. Mol. Spectrosc.
56
,
1
(
1975
).
13.
E. V.
Doktorov
,
I. A.
Malkin
, and
V. I.
Man’ko
,
J. Mol. Spectrosc.
64
,
302
(
1977
).
14.
A.
Warshel
(private communication).
15.
A.
Warshel
and
M.
Karplus
,
Chem. Phys. Lett.
17
,
7
(
1972
).
16.
A.
Warshel
,
J. Chem. Phys.
62
,
214
(
1975
).
17.
A.
Warshel
and
P.
Dauber
,
J. Chem. Phys.
66
,
5477
(
1977
).
18.
D. J.
Tannor
and
E. J.
Heller
,
J. Chem. Phys.
77
,
202
(
1982
).
19.
R. A.
Young
, Jr.
and
D. R.
Yarkony
,
J. Chem. Phys.
125
,
234301
(
2006
).
20.
T. M.
Ramond
,
G. E.
Davico
,
R. L.
Schwartz
, and
W. C.
Lineberger
,
J. Chem. Phys.
112
,
1158
(
2000
).
21.
H.
Lischka
,
M.
Dallos
,
P.
Szalay
,
D. R.
Yarkony
, and
R.
Shepard
,
J. Chem. Phys.
120
,
7322
(
2004
).
22.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
23.
J.
Paldus
, in
The Unitary Group for the Evaluation of Electronic Energy Matrix Elements
, edited by
J.
Hinze
(
Springer-Verlag
,
Berlin
,
1981
).
24.
I.
Shavitt
, in
The Unitary Group for the Evaluation of Electronic Energy Matrix Elements
, edited by
J.
Hinze
(
Springer-Verlag
,
Berlin
,
1981
).
25.
I.
Shavitt
, in
Mathematical Frontiers in Computational Chemical Physics
, edited by
D. G.
Truhlar
(
Springer
,
New York
,
1988
).
26.
H.
Lischka
,
R.
Shepard
,
I.
Shavitt
,
R.
Pitzer
,
M.
Dallos
,
T.
Müller
,
P. G.
Szalay
,
F. B.
Brown
,
R.
Alhrichs
,
H. J.
Böhm
,
A.
Chang
,
D. C.
Comeau
,
R.
Gdanitz
,
H.
Dachsel
,
C.
Ehrhardt
,
M.
Ernzerhof
,
P.
Höchtl
,
S.
Irle
,
G.
Kedziora
,
T.
Kovar
,
V.
Parasuk
,
M.
Pepper
,
P.
Scharf
,
H.
Schiffer
,
M.
Schindler
,
M.
Schüler
, and
J.-G.
Zhao
, COLUMBUS, an ab initio electronic structure program,
2003
.
27.
E. B.
Wilson
,
J. C.
Decius
, and
P. C.
Cross
,
Molecular Vibrations
(
McGraw-Hill
,
New York
,
1955
).
28.
T. A.
Barckholtz
and
T. A.
Miller
,
Int. Rev. Phys. Chem.
17
,
435
(
1998
).
You do not currently have access to this content.