In this study, we compare the electron densities for a set of hydrogen-bonded complexes obtained with either conventional Kohn-Sham density functional theory (DFT) calculations or with the frozen-density embedding (FDE) method, which is a subsystem approach to DFT. For a detailed analysis of the differences between these two methods, we compare the topology of the electron densities obtained from Kohn-Sham DFT and FDE in terms of deformation densities, bond critical points, and the negative Laplacian of the electron density. Different kinetic-energy functionals as needed for the frozen-density embedding method are tested and compared to a purely electrostatic embedding. It is shown that FDE is able to reproduce the characteristics of the density in the bonding region even in systems such as the FHF molecule, which contains one of the strongest hydrogen bonds. Basis functions on the frozen system are usually required to accurately reproduce the electron densities of supermolecular calculations. However, it is shown here that it is in general sufficient to provide just a few basis functions in the boundary region between the two subsystems so that the use of the full supermolecular basis set can be avoided. It also turns out that electron-density deformations upon bonding predicted by FDE lack directionality with currently available functionals for the nonadditive kinetic-energy contribution.

1.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
1133
(
1965
).
2.
T. A.
Wesolowski
and
A.
Warshel
,
J. Phys. Chem.
97
,
8050
(
1993
).
3.
4.
T. A.
Wesolowski
and
J.
Weber
,
Chem. Phys. Lett.
248
,
71
(
1996
).
5.
6.
T. A.
Wesolowski
and
J.
Weber
,
Int. J. Quantum Chem.
61
,
303
(
1997
).
7.
Y. A.
Wang
and
E. A.
Carter
, in
Theoretical Methods in Condensed Phase Chemistry
, edited by
S. D.
Schwartz
(
Kluwer
,
Dordrecht
,
2006
), pp.
117
184
.
8.
T. A.
Wesolowski
, in
Computational Chemistry: Reviews of Current Trends
, edited by
J.
Leszczynski
(
World Scientific
,
Singapore
,
2006
), Vol.
10
, pp.
1
82
.
9.
M. E.
Casida
and
T. A.
Wesolowski
,
Int. J. Quantum Chem.
96
,
577
(
2004
).
10.
J.
Neugebauer
,
J. Chem. Phys.
126
,
134116
(
2007
).
11.
E. V.
Stefanovich
and
T. N.
Truong
,
J. Chem. Phys.
104
,
2946
(
1996
).
12.
T. A.
Wesolowski
,
J. Chem. Phys.
106
,
8516
(
1997
).
13.
T. A.
Wesolowski
,
Y.
Ellinger
, and
J.
Weber
,
J. Chem. Phys.
108
,
6078
(
1998
).
14.
F.
Tran
,
J.
Weber
, and
T. A.
Wesolowski
,
Helv. Chim. Acta
84
,
1489
(
2001
).
15.
F.
Tran
,
J.
Weber
, and
T. A.
Wesolowski
,
J. Phys. Chem. B
106
,
8689
(
2002
).
16.
T. A.
Wesolowski
,
P.-Y.
Morgantini
, and
J.
Weber
,
J. Chem. Phys.
116
,
6411
(
2002
).
17.
F.
Tran
,
B.
Alameddinee
,
T. A.
Jenny
, and
T. A.
Wesolowski
,
J. Phys. Chem. A
108
,
9155
(
2004
).
18.
R.
Kevorkyants
,
M.
Dulak
, and
T. A.
Wesolowski
,
J. Chem. Phys.
124
,
024104
(
2006
).
19.
T. A.
Wesolowski
,
J. Am. Chem. Soc.
126
,
11444
(
2004
).
20.
J.
Neugebauer
,
M. J.
Louwerse
,
E. J.
Baerends
, and
T. A.
Wesolowski
,
J. Chem. Phys.
122
,
094115
(
2005
).
21.
J.
Neugebauer
,
C. R.
Jacob
,
T. A.
Wesolowski
, and
E. J.
Baerends
,
J. Phys. Chem. A
109
,
7805
(
2005
).
22.
C. R.
Jacob
,
J.
Neugebauer
,
L.
Jensen
, and
L.
Visscher
,
Phys. Chem. Chem. Phys.
8
,
2349
(
2006
).
23.
J.
Neugebauer
and
E. J.
Baerends
,
J. Phys. Chem. A
110
,
8786
(
2006
).
24.
C. R.
Jacob
,
T. A.
Wesolowski
, and
L.
Visscher
,
J. Chem. Phys.
123
,
174104
(
2005
).
25.
J.
Neugebauer
,
M. J.
Louwerse
,
P.
Belanzoni
,
T. A.
Wesolowski
, and
E. J.
Baerends
,
J. Chem. Phys.
123
,
114101
(
2005
).
26.
C. R.
Jacob
and
L.
Visscher
,
J. Chem. Phys.
125
,
194104
(
2006
).
27.
T.
Wesolowski
and
A.
Warshel
,
J. Phys. Chem.
98
,
5183
(
1994
).
28.
T. A.
Wesolowski
,
H.
Chermette
, and
J.
Weber
,
J. Chem. Phys.
105
,
9182
(
1996
).
29.
M.
Štrajbl
,
G.
Hong
, and
A.
Warshel
,
J. Phys. Chem. B
106
,
13333
(
2002
).
30.
G.
Hong
,
E.
Rosta
, and
A.
Warshel
,
J. Phys. Chem. B
110
,
19570
(
2006
).
31.
D.
Barker
and
M.
Sprik
,
Mol. Phys.
101
,
1183
(
2003
).
32.
M.
Iannuzzi
,
B.
Kirchner
, and
J.
Hutter
,
Chem. Phys. Lett.
421
,
16
(
2006
).
33.
C. R.
Jacob
,
J.
Neugebauer
, and
L.
Visscher
, “
A flexible implementation of frozen-density embedding for use in multilevel simulations
,”
J. Comput. Chem.
(in press).
34.
M. H. M.
Olsson
,
G.
Hong
, and
A.
Warshel
,
J. Am. Chem. Soc.
125
,
5025
(
2003
).
35.
P.
Huang
and
E. A.
Carter
,
J. Chem. Phys.
125
,
084102
(
2006
).
36.
T.
Klüner
,
N.
Govind
,
Y. A.
Wang
, and
E. A.
Carter
,
J. Chem. Phys.
116
,
42
(
2002
).
37.
N.
Govind
,
Y. A.
Wang
, and
E. A.
Carter
,
J. Chem. Phys.
110
,
7677
(
1999
).
38.
M.
Dulak
and
T. A.
Wesolowski
,
J. Chem. Phys.
124
,
164101
(
2006
).
39.
U.
Koch
and
P. L. A.
Popelier
,
J. Phys. Chem.
99
,
9747
(
1995
).
40.
I.
Mata
,
I.
Alkorta
,
E.
Espinosa
, and
E.
Molins
, in
The Quantum Theory of Atoms in Molecules
, edited by
C. F.
Matta
and
R. J.
Boyd
(
Wiley-VCH
,
Weinheim
,
2007
) pp.
425
451
.
41.
S. J.
Grabowski
, in
The Quantum Theory of Atoms in Molecules
, edited by
C. F.
Matta
and
R. J.
Boyd
(
Wiley-VCH
,
Weinheim
,
2007
), pp.
453
469
.
42.
R.
Bader
,
Atoms in Molecules
(
Clarendon
,
Oxford
,
1990
).
43.
The Quantum Theory of Atoms in Molecules
, edited by
C. F.
Matta
and
R. J.
Boyd
(
Wiley-VCH
,
Weinheim
,
2007
).
44.
N.
Hebben
,
H.-J.
Himmel
,
G.
Eickerling
,
C.
Herrmann
,
M.
Reiher
,
V.
Herz
,
M.
Presnitz
, and
W.
Scherer
,
Chem.-Eur. J.
13
,
10078
(
2007
).
45.
A.
Reisinger
,
N.
Trapp
,
I.
Krossing
,
S.
Altmannshofer
,
V.
Herz
,
M.
Presnitz
, and
W.
Scherer
,
Angew. Chem.
119
,
8445
(
2007
).
46.
W.
Scherer
and
G. S.
McGrady
,
Angew. Chem., Int. Ed.
43
,
1782
(
2004
).
47.
AMSTERDAM DENSITY FUNCTIONAL program, Theoretical Chemistry,
Vrije Universiteit
, Amsterdam, URL: http://www.scm.com
48.
G.
te Velde
,
F. M.
Bickelhaupt
,
E. J.
Baerends
,
C.
Fonseca Guerra
,
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
T.
Ziegler
,
J. Comput. Chem.
22
,
931
(
2001
).
49.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
50.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
51.
J. P.
Perdew
, in
Electronic Structure of Solids
, edited by
P.
Ziesche
and
H.
Eschrig
(
Akademie Verlag
,
Berlin
,
1991
), p.
11
.
52.
A.
Lembarki
and
H.
Chermette
,
Phys. Rev. A
50
,
5328
(
1994
).
53.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
54.
C.
Katan
,
P.
Rabiller
,
C.
Lecomte
,
M.
Guezo
,
V.
Oison
, and
M.
Souhassou
,
J. Appl. Crystallogr.
36
,
65
(
2003
).
55.
MATHEMATICA version 5.2, Wolfram Research, Inc., Champaign, IL,
2005
.
56.
See EPAPS Document No. E-JCPSA6-128-004802 for additional tables and figures. This document can be reached through a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).
57.
M.
Dulak
and
T. A.
Wesolowski
,
Int. J. Quantum Chem.
101
,
543
(
2005
).
58.
L. H.
Thomas
,
Proc. Cambridge Philos. Soc.
23
,
542
(
1927
).
60.
C. F.
von Weizsäcker
,
Z. Phys.
96
,
431
(
1935
).
61.
C. R.
Jacob
,
S. M.
Beyhan
, and
L.
Visscher
,
J. Chem. Phys.
126
,
234116
(
2007
).
62.
A.
Laio
,
J.
VandeVondele
, and
U.
Rothlisberger
,
J. Chem. Phys.
116
,
6941
(
2002
).
63.
E. R.
Davidson
,
Int. J. Quantum Chem.
98
,
317
(
2004
).
64.
P. G.
Wenthold
and
R. R.
Squires
,
J. Phys. Chem.
99
,
2002
(
1995
).
65.
J. E. D.
Bene
and
M. J.
Jordan
,
Spectrochim. Acta, Part A
55
,
719
(
2004
).
66.
T.
Wesolowski
,
R. P.
Muller
, and
A.
Warshel
,
J. Phys. Chem.
100
,
15444
(
1996
).

Supplementary Material

You do not currently have access to this content.