To accurately determine the reaction path and its energetics for enzymatic and solution-phase reactions, we present a sequential sampling and optimization approach that greatly enhances the efficiency of the ab initio quantum mechanics/molecular mechanics minimum free-energy path (QM/MM-MFEP) method. In the QM/MM-MFEP method, the thermodynamics of a complex reaction system is described by the potential of mean force (PMF) surface of the quantum mechanical (QM) subsystem with a small number of degrees of freedom, somewhat like describing a reaction process in the gas phase. The main computational cost of the QM/MM-MFEP method comes from the statistical sampling of conformations of the molecular mechanical (MM) subsystem required for the calculation of the QM PMF and its gradient. In our new sequential sampling and optimization approach, we aim to reduce the amount of MM sampling while still retaining the accuracy of the results by first carrying out MM phase-space sampling and then optimizing the QM subsystem in the fixed-size ensemble of MM conformations. The resulting QM optimized structures are then used to obtain more accurate sampling of the MM subsystem. This process of sequential MM sampling and QM optimization is iterated until convergence. The use of a fixed-size, finite MM conformational ensemble enables the precise evaluation of the QM potential of mean force and its gradient within the ensemble, thus circumventing the challenges associated with statistical averaging and significantly speeding up the convergence of the optimization process. To further improve the accuracy of the QM/MM-MFEP method, the reaction path potential method developed by Lu and Yang [Z. Lu and W. Yang, J. Chem. Phys.121, 89 (2004)] is employed to describe the QM/MM electrostatic interactions in an approximate yet accurate way with a computational cost that is comparable to classical MM simulations. The new method was successfully applied to two example reaction processes, the classical SN2 reaction of Cl+CH3Cl in solution and the second proton transfer step of the reaction catalyzed by the enzyme 4-oxalocrotonate tautomerase. The activation free energies calculated with this new sequential sampling and optimization approach to the QM/MM-MFEP method agree well with results from other simulation approaches such as the umbrella sampling technique with direct QM/MM dynamics sampling, demonstrating the accuracy of the iterative QM/MM-MFEP method.

1.
A.
Warshel
,
Computer Modeling of Chemical Reactions in Enzymes and Solutions
(
Wiley & Sons
,
New York
,
1991
).
2.
A.
Warshel
and
M.
Levitt
,
J. Mol. Biol.
103
,
227
(
1976
).
3.
J. -K.
Hwang
,
G.
King
,
S.
Creighton
, and
A.
Warshel
,
J. Am. Chem. Soc.
110
,
5297
(
1988
).
4.
M.
Strajbl
,
G.
Hong
, and
A.
Warshel
,
J. Phys. Chem. B
106
,
13333
(
2002
).
5.
A.
Warshel
,
Annu. Rev. Biophys. Biomol. Struct.
32
,
425
(
2003
).
6.
A.
Warshel
,
P. K.
Sharma
,
M.
Kato
,
Y.
Xiang
,
H.
Liu
, and
M. H. M.
Olsson
,
Chem. Rev.
106
,
3210
(
2006
).
7.
J.
Chandrasekhar
,
S. F.
Smith
, and
W. L.
Jorgensen
,
J. Am. Chem. Soc.
107
,
154
(
1985
).
8.
W. L.
Jorgensen
,
Acc. Chem. Res.
22
,
184
(
1989
).
9.
O.
Acevedo
and
W. L.
Jorgensen
,
J. Am. Chem. Soc.
128
,
6141
(
2006
).
10.
M. J.
Field
,
P. A.
Bash
, and
M.
Karplus
,
J. Comput. Chem.
11
,
700
(
1990
).
11.
P. A.
Bash
,
M. J.
Field
,
R. C.
Davenport
,
G. A.
Petsko
,
D.
Ringe
, and
M.
Karplus
,
Biochemistry
30
,
5826
(
1991
).
12.
Q.
Cui
and
M.
Karplus
,
J. Chem. Phys.
112
,
1133
(
2000
).
13.
Q.
Cui
and
M.
Karplus
,
J. Phys. Chem. B
104
,
3721
(
2000
).
14.
Q.
Cui
and
M.
Karplus
,
J. Am. Chem. Soc.
123
,
2284
(
2001
).
15.
M.
Garcia-Viloca
,
J.
Gao
,
M.
Karplus
, and
D. G.
Truhlar
,
Science
303
,
186
(
2004
).
16.
J.
Gao
and
X.
Xia
,
Science
258
,
631
(
1992
).
17.
J.
Gao
and
D. G.
Truhlar
,
Annu. Rev. Phys. Chem.
53
,
467
(
2002
).
18.
J. L.
Gao
,
Curr. Opin. Struct. Biol.
13
,
184
(
2003
).
19.
J.
Gao
,
S.
Ma
,
D. T.
Major
,
K.
Nam
,
J.
Pu
, and
D. G.
Truhlar
,
Chem. Rev.
106
,
3188
(
2006
).
20.
H. Y.
Liu
,
Y. K.
Zhang
, and
W. T.
Yang
,
J. Am. Chem. Soc.
122
,
6560
(
2000
).
21.
Y.
Zhang
,
H.
Liu
, and
W.
Yang
,
J. Chem. Phys.
112
,
3483
(
2000
).
22.
H.
Liu
,
M.
Elstner
,
E.
Kaxiras
,
T.
Frauenheim
,
J.
Hermans
, and
W.
Yang
,
Proteins Struct. Funct. Genet.
44
,
484
(
2001
).
23.
G. A.
Cisneros
,
H. Y.
Liu
,
Y. K.
Zhang
, and
W. T.
Yang
,
J. Am. Chem. Soc.
125
,
10384
(
2003
).
24.
H.
Liu
,
Z.
Lu
,
G. A.
Cisneros
, and
W.
Yang
,
J. Chem. Phys.
121
,
697
(
2004
).
25.
Z.
Lu
and
W.
Yang
,
J. Chem. Phys.
121
,
89
(
2004
).
26.
H.
Hu
and
W.
Yang
,
J. Chem. Phys.
123
,
041102
(
2005
).
27.
G. A.
Cisneros
,
M.
Wang
,
P.
Silinski
,
M. C.
Fitzgerald
, and
W. T.
Yang
,
J. Phys. Chem. A
110
,
700
(
2006
).
28.
P.
Hu
and
Y. K.
Zhang
,
J. Am. Chem. Soc.
128
,
1272
(
2006
).
29.
L. H.
Wang
,
X. Y.
Yu
,
P.
Hu
,
S.
Broyde
, and
Y. K.
Zhang
,
J. Am. Chem. Soc.
129
,
4731
(
2007
).
30.
G. M.
Torrie
and
J. P.
Valleau
,
J. Comput. Phys.
23
,
187
(
1977
).
31.
B.
Kuhn
and
P. A.
Kollman
,
J. Am. Chem. Soc.
122
,
2586
(
2000
).
32.
U. C.
Singh
and
P. A.
Kollmann
,
J. Comput. Chem.
7
,
718
(
1986
).
33.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al., GAUSSIAN 03,
Gaussian, Inc.
, Wallingford, CT,
2004
.
34.
A.
Shurki
and
A.
Warshel
,
Adv. Protein Chem.
66
,
249
(
2003
).
35.
T.
Wesolowski
and
A.
Warshel
,
J. Phys. Chem.
98
,
5183
(
1994
).
36.
T.
Wesolowski
,
R. P.
Muller
, and
A.
Warshel
,
J. Phys. Chem.
100
,
15444
(
1996
).
37.
R. P.
Muller
and
A.
Warshel
,
J. Phys. Chem.
99
,
17516
(
1995
).
38.
J.
Bentzien
,
R. P.
Muller
,
J.
Florián
, and
A.
Warshel
,
J. Phys. Chem. B
102
,
2293
(
1998
).
39.
Y.
Zhang
,
T. -S.
Lee
, and
W.
Yang
,
J. Chem. Phys.
110
,
46
(
1999
).
40.
G. A.
Cisneros
,
H. Y.
Liu
,
Z. Y.
Lu
, and
W. T.
Yang
,
J. Chem. Phys.
122
,
114502
(
2005
).
41.
M.
Wang
,
Z.
Lu
, and
W.
Yang
,
J. Chem. Phys.
121
,
101
(
2004
).
42.
G. A.
Cisneros
,
M.
Wang
,
P.
Silinski
,
M. C.
Fitzgerald
, and
W.
Yang
,
Biochemistry
43
,
6885
(
2004
).
43.
M.
Wang
,
Z.
Lu
, and
W.
Yang
,
J. Chem. Phys.
124
,
124516
(
2006
).
44.
S. L.
Wang
,
P.
Hu
, and
Y. K.
Zhang
,
J. Phys. Chem. B
111
,
3758
(
2007
).
45.
C.
Corminboeuf
,
P.
Hu
,
M. E.
Tuckerman
, and
Y. K.
Zhang
,
J. Am. Chem. Soc.
128
,
4530
(
2006
).
46.
J.
Kästner
,
H. M.
Senn
,
S.
Thiel
,
N.
Otte
, and
W.
Thiel
,
J. Chem. Theory Comput.
2
,
452
(
2006
).
47.
M.
Klahn
,
S.
Braun-Sand
,
E.
Rosta
, and
A.
Warshel
,
J. Phys. Chem. B
109
,
15645
(
2005
).
48.
G. A.
Cisneros
and
W. T.
Yang
(unpublished).
49.
H.
Hu
,
Z. Y.
Lu
, and
W. T.
Yang
,
J. Chem. Theory Comput.
3
,
390
(
2007
).
50.
M.
Nagaoka
,
N.
Okuyama-Yoshida
, and
T.
Yamabe
,
J. Phys. Chem. A
102
,
8202
(
1998
).
51.
N.
Okuyama-Yoshida
,
M.
Nagaoka
, and
T.
Yamabe
,
Int. J. Quantum Chem.
70
,
95
(
1998
).
52.
N.
Okuyama-Yoshida
,
K.
Kataoka
,
M.
Nagaoka
, and
T.
Yamabe
,
J. Chem. Phys.
113
,
3519
(
2000
).
53.
H.
Hirao
,
Y.
Nagae
, and
M.
Nagaoka
,
Chem. Phys. Lett.
348
,
350
(
2001
).
54.
P.
Fleurat-Lessard
and
T.
Ziegler
,
J. Chem. Phys.
123
,
084101
(
2005
).
55.
S. -Y.
Yang
,
I.
Hristov
,
P.
Fleurat-Lessard
, and
T.
Ziegler
,
J. Phys. Chem. A
109
,
197
(
2005
).
56.
G.
Li
and
Q.
Cui
,
J. Mol. Graph. Model.
24
,
82
(
2005
).
57.
L.
Maragliano
,
A.
Fischer
,
E.
Vanden-Eijnden
, and
G.
Ciccotti
,
J. Chem. Phys.
125
,
024106
(
2006
).
58.
M.
Higashi
,
S.
Hayashi
, and
S.
Kato
,
J. Chem. Phys.
126
,
144503
(
2007
).
59.
R. E.
Miller
,
Optimization: Foundations and Applications
(
Wiley & Sons
,
New York
,
2000
).
60.
T. H.
Rod
and
U.
Ryde
,
J. Chem. Theory Comput.
1
,
1240
(
2005
).
61.
A.
Morita
and
S.
Kato
,
J. Am. Chem. Soc.
119
,
4021
(
1997
).
62.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
Oxford
,
1994
).
63.
H.
Hu
,
Z.
Lu
, and
W.
Yang
,
J. Chem. Theory Comput.
3
,
1004
(
2007
).
64.
Z.
Lu
,
H.
Hu
, and
W.
Yang
(to be published).
65.
H.
Jónsson
,
G.
Mills
, and
K. W.
Jacobsen
,
Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions
,
Classical and Quantum Dynamics in Condensed Phase Simulations
, edited by
B. J.
Berne
,
G.
Ciccotti
,
D. F.
Coker
(
World Scientific
,
Singapore
,
1998
).
66.
P. Y.
Ayala
and
H. B.
Schlegel
,
J. Chem. Phys.
107
,
375
(
1997
).
67.
S. K.
Burger
and
W.
Yang
,
J. Chem. Phys.
124
,
054109
(
2006
).
68.
T. L.
Hill
,
An Introduction to Statistical Thermodynamics
(
Dover
,
New York
,
1987
).
69.
J.
Hermans
and
L.
Wang
,
J. Am. Chem. Soc.
119
,
2707
(
1997
).
70.
M.
Strajbl
,
Y. Y.
Sham
,
J.
Villa
,
Z. T.
Chu
, and
A.
Warshel
,
J. Phys. Chem. B
104
,
4578
(
2000
).
71.
C. L.
Brooks
 III
,
M.
Karplus
, and
B. M.
Pettitt
,
Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics
(
Wiley & Sons
,
New York
,
1988
).
72.
H.
Hu
,
M.
Elstner
, and
J.
Hermans
,
Proteins Struct. Funct. Genet.
50
,
451
(
2003
).
73.
G.
Mann
,
R. H.
Yun
,
L.
Nyland
,
J.
Prins
,
J.
Board
, and
J.
Hermans
, in
Computational Methods for Macromolecules: Challenges and Applications
Proceedings of the 3rd International Workshop on Algorithms for Macromolecular Modelling
, edited by
T.
Schlick
and
H. H.
Gan
(
Springer
,
Berlin
,
2002
), p.
129
.
74.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
75.
A. D.
MacKerell
,
B.
Brooks
,
C. L.
Brooks
,
L.
Nilsson
,
B.
Roux
,
Y.
Won
, and
M.
Karplus
, in
The Encyclopedia of Computational Chemistry
, edited by
P. v. R.
Schleyer
 et al. (
Wiley & Sons
,
Chichester
,
1998
), Vol.
1
, p.
271
.
76.
M. E.
Tuckerman
,
B. J.
Berne
, and
G. J.
Martyna
,
J. Chem. Phys.
97
,
1990
(
1992
).
77.
T.
Schlick
,
R. D.
Skeel
,
A. T.
Brünger
,
L. V.
Kalé
,
J. A.
Board
,
J.
Hermans
, and
K.
Schulten
,
J. Comput. Phys.
151
,
9
(
1999
).
78.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
79.
A. M.
Ferrenberg
and
R. H.
Swendsen
,
Phys. Rev. Lett.
63
,
1195
(
1989
).
80.
S.
Kumar
,
D.
Bouzida
,
R. H.
Swendsen
,
P. A.
Kollman
, and
J. M.
Rosenberg
,
J. Comput. Chem.
13
,
1011
(
1992
).
81.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
82.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
83.
M.
Head-Gordon
,
J. A.
Pople
, and
M. J.
Frisch
,
Chem. Phys. Lett.
153
,
503
(
1988
).
84.
D. J.
McLennan
,
Aust. J. Chem.
31
,
1897
(
1978
).
85.
P. A.
Bash
,
M. J.
Field
, and
M.
Karplus
,
J. Am. Chem. Soc.
109
,
8092
(
1987
).
86.
M. H. M.
Olsson
and
A.
Warshel
,
J. Am. Chem. Soc.
126
,
15167
(
2004
).
88.
K.
Ohmiya
and
S.
Kato
,
Chem. Phys. Lett.
348
,
75
(
2001
).
89.
A.
Radzicka
and
R.
Wolfenden
,
Science
267
,
90
(
1995
).
90.
R.
Wolfenden
and
M. J.
Snider
,
Acc. Chem. Res.
34
,
938
(
2001
).
91.
A.
Warshel
,
J. Biol. Chem.
273
,
27035
(
1998
).
92.
T. C.
Bruice
and
P. Y.
Bruice
,
J. Am. Chem. Soc.
127
,
12478
(
2005
).
You do not currently have access to this content.