The predicted stability differences of the conformational polymorphs of oxalyl dihydrazide and ortho-acetamidobenzamide are unrealistically large when the modeling of intermolecular energies is solely based on the isolated-molecule charge density, neglecting charge density polarization. Ab initio calculated crystal electron densities showed qualitative differences depending on the spatial arrangement of molecules in the lattice with the greatest variations observed for polymorphs that differ in the extent of inter- and intramolecular hydrogen bonding. We show that accounting for induction dramatically alters the calculated stability order of the polymorphs and reduces their predicted stability differences to be in better agreement with experiment. Given the challenges in modeling conformational polymorphs with marked differences in hydrogen bonding geometries, we performed an extensive periodic density functional study with a range of exchange-correlation functionals using both atomic and plane wave basis sets. Although such electronic structure methods model the electrostatic and polarization contributions well, the underestimation of dispersion interactions by current exchange-correlation functionals limits their applicability. The use of an empirical dispersion-corrected density functional method consistently reduces the structural deviations between the experimental and energy minimized crystal structures and achieves plausible stability differences. Thus, we have established which types of models may give worthwhile relative energies for crystal structures and other condensed phases of flexible molecules with intra- and intermolecular hydrogen bonding capabilities, advancing the possibility of simulation studies on polymorphic pharmaceuticals.

1.
G. M.
Day
,
T. G.
Cooper
,
A. J.
Cruz Cabeza
 et al.,
Acta Crystallogr., Sect. B: Struct. Sci.
(in preparation).
2.
M. A.
Neumann
and
M. A.
Perrin
,
J. Phys. Chem. B
109
,
15531
(
2005
).
3.
M. A.
Neumann
,
F. J. J.
Leusen
, and
J.
Kendrick
,
Angew. Chem., Int. Ed.
47
,
2427
(
2008
).
4.
F. H.
Allen
,
S. E.
Harris
, and
R.
Taylor
,
J. Comput.-Aided Mol. Des.
10
,
247
(
1996
).
5.
H.
Nowell
and
S. L.
Price
,
Acta Crystallogr., Sect. B: Struct. Sci.
61
,
558
(
2005
).
6.
G. M.
Day
,
W. D. S.
Motherwell
, and
W.
Jones
,
Phys. Chem. Chem. Phys.
9
,
1693
(
2007
).
7.
B. P.
van Eijck
,
W. T. M.
Mooij
,
J.
Kroon
,
J. Phys. Chem. B
105
,
10573
(
2001
).
8.
D.
Buttar
,
M. H.
Charlton
,
R.
Docherty
,
J.
Starbuck
,
J. Chem. Soc., Perkin Trans. 2
1998
,
763
.
9.
G. M.
Day
, “
Lattice dynamical studies of molecular crystals with application to polymorphism and structure prediction
,” Ph.D. thesis,
University College London
,
2003
.
10.
C. K.
Leech
,
S. A.
Barnett
,
K.
Shankland
,
N.
Gutmann
, and
C. C.
Wilson
,
Acta Crystallogr., Sect. B: Struct. Sci.
62
,
926
(
2006
).
11.
A. R.
Oganov
and
C. W.
Glass
,
J. Chem. Phys.
124
,
244704
(
2006
).
12.
B.
Civalleri
,
K.
Doll
, and
C. M.
Zicovich-Wilson
,
J. Phys. Chem. B
111
,
26
(
2007
).
13.
M. A.
Spackman
and
A. S.
Mitchell
,
Phys. Chem. Chem. Phys.
3
,
1518
(
2001
).
14.
J. A.
Chisholm
,
S.
Motherwell
,
P. R.
Tulip
,
S.
Parsons
, and
S. J.
Clark
,
Cryst. Growth Des.
5
,
1437
(
2005
).
15.
B.
Civalleri
,
C. M.
Zicovich-Wilson
,
L.
Valenzano
, and
P.
Ugliengo
,
CrystEngComm
10
,
405
(
2008
).
16.
S. Y.
Ahn
,
F.
Guo
,
B. M.
Kariuki
, and
K. D. M.
Harris
,
J. Am. Chem. Soc.
128
,
8441
(
2006
).
17.
R.
Dovesi
,
B.
Civalleri
,
R.
Orlando
,
C.
Roetti
, and
V. R.
Saunders
,
Rev. Comput. Chem.
21
,
1
(
2005
).
18.
M. C.
Payne
,
M. P.
Teter
,
D. C.
Allan
,
T. A.
Arias
, and
J. D.
Joannopoulos
,
Rev. Mod. Phys.
64
,
1045
(
1992
).
19.
A.
Burger
and
R.
Ramberger
,
Mikrochim. Acta
2
,
259
(
1979
).
20.
A.
Burger
and
R.
Ramberger
,
Mikrochim. Acta
2
,
273
(
1979
).
21.
S. A.
Barnett
,
D. A.
Tocher
, and
M.
Vickers
,
CrystEngComm
8
,
313
(
2006
).
22.
L. A.
Errede
,
M. C.
Etter
,
R. C.
Williams
, and
S. M.
Darnauer
,
J. Chem. Soc., Perkin Trans. 2
1981
,
233
.
23.
See EPAPS Document No. E-JCPSA6-128-022823 for figure showing the iterative convergence of induction energy estimates; figure showing the convergence of BSSE for periodic, atom-centered, Gaussian basis set DFT calculations; figure showing the intramolecular energy basis set dependence for oxalyl dihydrazide polymorph a; a discussion on the applicability of the heat of transition rule for ortho-acetamidobenzamide; figures showing the basis for the choice of basis set cutoff and k-point spacing for CASTEP calculations; tables showing the reproduction of the flexible torsion angles identified in Scheme 1 during monomer+model and quantum mechanical relaxed-cell crystal energy minimizations; and table showing the variation of intermolecular, conformational, and BSSE contributions to crystal energy with Hamiltonian and basis set for fixed-cell quantum mechanical optimizations. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.
24.
J. B.
Clark
,
J. W.
Hastie
,
L. H. E.
Kihlborg
,
R.
Metselaar
, and
M. M.
Thackeray
,
Pure Appl. Chem.
66
,
577
(
1994
).
25.
J.
Bernstein
,
Polymorphism in Molecular Crystals
(
Clarendon
,
Oxford
,
2002
).
26.
P. G.
Karamertzanis
and
S. L.
Price
,
J. Chem. Theory Comput.
2
,
1184
(
2006
).
27.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al., GAUSSIAN 03, Gaussian, Inc., Wallingford, CT,
2003
28.
D. J.
Willock
,
S. L.
Price
,
M.
Leslie
, and
C. R. A.
Catlow
,
J. Comput. Chem.
16
,
628
(
1995
).
29.
A. J.
Stone
,
J. Chem. Theory Comput.
1
,
1128
(
2005
).
30.
S. R.
Cox
,
L. Y.
Hsu
, and
D. E.
Williams
,
Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.
37
,
293
(
1981
).
31.
D. E.
Williams
and
S. R.
Cox
,
Acta Crystallogr., Sect. B: Struct. Sci.
40
,
404
(
1984
).
32.
D. S.
Coombes
,
S. L.
Price
,
D. J.
Willock
, and
M.
Leslie
,
J. Phys. Chem.
100
,
7352
(
1996
).
33.
P.
Hobza
and
J.
Sponer
,
J. Am. Chem. Soc.
124
,
11802
(
2002
).
34.
P.
Jurecka
and
P.
Hobza
,
J. Am. Chem. Soc.
125
,
15608
(
2003
).
35.
G. W. A.
Welch
,
P. G.
Karamertzanis
,
A. J.
Misquitta
,
A. J.
Stone
, and
S. L.
Price
,
J. Chem. Theory Comput.
4
,
522
(
2008
).
36.
C. M.
Breneman
and
K. B.
Wiberg
,
J. Comput. Chem.
11
,
361
(
1990
).
37.
A. J.
Stone
,
The Theory of Intermolecular Forces
, 1st ed. (
Clarendon
,
Oxford
,
1996
).
38.
R.
Dovesi
,
V. R.
Saunders
,
C.
Rosetti
,
R.
Orlando
,
C. M.
Zicovich-Wilson
,
F.
Pascale
,
B.
Civalleri
,
K.
Doll
,
N. M.
Harrison
,
I. J.
Bush
,
Ph.
D'Arco
, and
M.
Llunell
, CRYSTAL06 User’s Manual, University of Turin, Turin, January 31,
2008
.
39.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
40.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
41.
C. T.
Lee
,
W. T.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
42.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
43.
A.
Schafer
,
H.
Horn
, and
R.
Ahlrichs
,
J. Chem. Phys.
97
,
2571
(
1992
).
44.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
45.
A. K.
Rappe
and
W. A.
Goddard
,
J. Phys. Chem.
95
,
3358
(
1991
).
46.
T.
van Mourik
,
P. G.
Karamertzanis
, and
S. L.
Price
,
J. Phys. Chem. A
110
,
8
(
2006
).
47.
Y.
Wang
and
J. P.
Perdew
,
Phys. Rev. B
44
,
13298
(
1991
).
48.
S. J.
Clark
,
M. D.
Segall
,
C. J.
Pickard
,
P. J.
Hasnip
,
M. J.
Probert
,
K.
Refson
, and
M. C.
Payne
,
Z. Kristallogr.
220
,
567
(
2005
).
49.
S.
Tosoni
,
C.
Tuma
,
J.
Sauer
,
B.
Civalleri
, and
P.
Ugliengo
,
J. Chem. Phys.
127
,
154102
(
2007
).
50.
D.
Vanderbilt
,
Phys. Rev. B
41
,
7892
(
1990
).
51.
M. A.
Neumann
, GRACE, Version 1.0, Avant-garde Materials Simulation,
2007
.
52.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
53.
G.
Kresse
and
J.
Furthmuller
,
Phys. Rev. B
54
,
11169
(
1996
).
54.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
55.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
56.
J. A.
Chisholm
and
S.
Motherwell
,
J. Appl. Crystallogr.
38
,
228
(
2005
).
57.
R.
Taylor
,
O.
Kennard
, and
W.
Versichel
,
J. Am. Chem. Soc.
105
,
5761
(
1983
).
58.
R.
Taylor
and
O.
Kennard
,
Acc. Chem. Res.
17
,
320
(
1984
).
59.
R.
Taylor
,
O.
Kennard
, and
W.
Versichel
,
Acta Crystallogr., Sect. B: Struct. Sci.
40
,
280
(
1984
).
60.
Y.
Zhao
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
1
,
415
(
2005
).
61.
J. M.
Tao
and
J. P.
Perdew
,
J. Chem. Phys.
122
,
114102
(
2005
).
62.
B.
Montanari
,
P.
Ballone
, and
R. O.
Jones
,
J. Chem. Phys.
108
,
6947
(
1998
).
63.
C.
Ouvrard
and
J. B. O.
Mitchell
,
Acta Crystallogr., Sect. B: Struct. Sci.
56
,
676
(
2003
).
64.
S. M.
Cybulski
and
C. E.
Seversen
,
J. Chem. Phys.
122
,
014117
(
2005
).
65.
S. L.
Price
,
C. H.
Faerman
, and
C. W.
Murray
,
J. Comput. Chem.
12
,
1187
(
1991
).
66.
U.
Koch
,
P. L. A.
Popelier
,
A. J.
Stone
,
Chem. Phys. Lett.
238
,
253
(
1995
).
67.
A. J.
Misquitta
,
A. J.
Stone
, and
S. L.
Price
,
J. Chem. Theory Comput.
4
,
19
(
2008
).
68.
A. J.
Stone
and
A. J.
Misquitta
,
Int. Rev. Phys. Chem.
26
,
193
(
2007
).
69.
A. J.
Misquitta
,
G. W. A.
Welch
,
A. J.
Stone
, and
S. L.
Price
,
Chem. Phys. Lett.
456
,
105
(
2008
).
70.
J. F.
Dobson
,
K.
McLennan
,
A.
Rubio
,
J.
Wang
,
T.
Gould
,
H. M.
Le
, and
B. P.
Dinte
,
Aust. J. Chem.
54
,
513
(
2001
).
71.
T.
van Mourik
and
R. J.
Gdanitz
,
J. Chem. Phys.
116
,
9620
(
2002
).
72.
Q.
Wu
and
W. T.
Yang
,
J. Chem. Phys.
116
,
515
(
2002
).
73.
S. X.
Feng
and
T. L.
Li
,
J. Chem. Theory Comput.
2
,
149
(
2006
).
74.
U.
Zimmerli
,
M.
Parrinello
, and
P.
Koumoutsakos
,
J. Chem. Phys.
120
,
2693
(
2004
).
75.
P.
Jurecka
,
J.
Cerny
,
P.
Hobza
, and
D. R.
Salahub
,
J. Comput. Chem.
28
,
555
(
2007
).
76.
S.
Grimme
,
J. Comput. Chem.
25
,
1463
(
2004
).
77.
P. G.
Karamertzanis
,
P.
Raiteri
,
M.
Parrinello
,
M.
Leslie
, and
S. L.
Price
,
J. Phys. Chem. B
112
,
4298
(
2008
).
78.
A. E.
Gray
,
G. M.
Day
,
M.
Leslie
, and
S. L.
Price
,
Mol. Phys.
102
,
1067
(
2004
).
79.
B. P.
van Eijck
,
J. Comput. Chem.
22
,
816
(
2001
).
80.
G. M.
Day
,
S. L.
Price
, and
M.
Leslie
,
J. Phys. Chem. B
107
,
10919
(
2003
).
81.
S. L.
Price
,
Adv. Drug Delivery Rev.
56
,
301
(
2004
).
82.
J. P. M.
Lommerse
,
W. D. S.
Motherwell
,
H. L.
Ammon
 et al.,
Acta Crystallogr., Sect. B: Struct. Sci.
56
,
697
(
2000
).
83.
W. D. S.
Motherwell
,
H. L.
Ammon
,
J. D.
Dunitz
 et al.,
Acta Crystallogr., Sect. B: Struct. Sci.
58
,
647
(
2002
).
84.
G. M.
Day
,
W. D. S.
Motherwell
,
H. L.
Ammon
 et al.,
Acta Crystallogr., Sect. B: Struct. Sci.
61
,
511
(
2005
).
85.
C.
Ouvrard
and
S. L.
Price
,
Cryst. Growth Des.
4
,
1119
(
2004
).
86.
P. G.
Karamertzanis
and
C. C.
Pantelides
,
Mol. Phys.
105
,
273
(
2007
).
87.
F. J. J.
Leusen
,
Cryst. Growth Des.
3
,
189
(
2003
).
88.
M. D.
Gourlay
,
J.
Kendrick
, and
F. J. J.
Leusen
,
Cryst. Growth Des.
7
,
56
(
2007
).
89.
T. G.
Cooper
,
W.
Jones
,
W. D. S.
Motherwell
, and
G. M.
Day
,
CrystEngComm
9
,
595
(
2007
).
90.
P. G.
Karamertzanis
and
C. C.
Pantelides
,
J. Comput. Chem.
26
,
304
(
2005
).
91.
C.
Pisani
,
M.
Busso
,
G.
Capecchi
,
S.
Casassa
,
R.
Dovesi
,
L.
Maschio
,
C.
Zicovich-Wilson
, and
M.
Schutz
,
J. Chem. Phys.
122
,
094113
(
2005
).
92.
L.
Maschio
,
D.
Usvyat
,
F. R.
Manby
,
S.
Casassa
,
C.
Pisani
, and
M.
Schutz
,
Phys. Rev. B
76
,
075101
(
2007
).
93.
D.
Usvyat
,
L.
Maschio
,
F. R.
Manby
,
S.
Casassa
,
M.
Schutz
, and
C.
Pisani
,
Phys. Rev. B
76
,
075102
(
2007
).
94.
E.
Tapavicza
,
I. C.
Lin
,
O. A.
von Lilienfeld
,
I.
Tavernelli
,
M. D.
Coutinho-Neto
, and
U.
Rothlisberger
,
J. Chem. Theory Comput.
3
,
1673
(
2007
).
95.
Y.
Zhao
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
2
,
1009
(
2006
).
96.
S. L.
Price
,
Phys. Chem. Chem. Phys.
10
,
1996
(
2008
).
97.
A.
Bondi
,
J. Phys. Chem.
68
,
441
(
1964
).
98.
A. J.
Stone
,
A.
Dullweber
,
O.
Engkvist
,
E.
Fraschini
,
M. P.
Hodges
,
A. W.
Meredith
,
D. R.
Nutt
,
P. L. A.
Popelier
, and
D. J.
Wales
, ORIENT, a program for studying interactions between molecules, Version 4.6, University of Cambridge,
2006
.

Supplementary Material

You do not currently have access to this content.