Three-state conical intersections have been located and characterized for cytosine and its analog 5-methyl-2-pyrimidinone using multireference configuration-interaction ab initio methods. The potential energy surfaces for each base contain three different three-state intersections: two different S0-S1-S2 intersections (gsππ*nNπ* and gsππ*nOπ*) and an S1-S2-S3 intersection (ππ*nNπ*nOπ*). Two-state seam paths from these intersections are shown to be connected to previously reported two-state conical intersections. Nonadiabatic coupling terms have been calculated, and the effects of the proximal third state on these quantities are detailed. In particular, it is shown that when one of these loops incorporates more than one seam point, there is a profound and predictable effect on the phase of the nonadiabatic coupling terms, and as such provides a diagnostic for the presence and location of additional seams. In addition, it is shown that each of the three three-state conical intersections located on cytosine and 5-methyl-2-pyrimidinone is qualitatively similar between the two bases in terms of energies and character, implying that, like with the stationary points and two-state conical intersections previously reported for these two bases, there is an underlying pattern of energy surfaces for 2-pyrimidinone bases, in general, and this pattern also includes three-state conical intersections.

1.
Conical Intersections: Electronic Structure, Dynamics & Spectroscopy
, edited by
W.
Domcke
,
D. R.
Yarkony
, and
H.
Köppel
(
World Scientific
,
Singapore
,
2004
), Vol.
15
.
2.
S.
Matsika
, in
Reviews in Computational Chemistry
, edited by
K. B.
Lipkowitz
and
T. R.
Cundari
(
Wiley
,
Hoboken, NJ
,
2007
), Vol.
23
, p.
83
.
3.
C. E.
Crespo-Hernández
,
B.
Cohen
,
P. M.
Hare
, and
B.
Kohler
,
Chem. Rev. (Washington, D.C.)
104
,
1977
(
2004
).
4.
A. L.
Sobolewski
and
W.
Domcke
,
Eur. Phys. J. D
20
,
369
(
2002
).
5.
N.
Ismail
,
L.
Blancafort
,
M.
Olivucci
,
B.
Kohler
, and
M.
Robb
,
J. Am. Chem. Soc.
124
,
6818
(
2002
).
6.
M.
Merchán
and
L.
Serrano-Andrés
,
J. Am. Chem. Soc.
125
,
8108
(
2003
).
7.
S.
Matsika
,
J. Phys. Chem. A
108
,
7584
(
2004
).
8.
A. L.
Sobolewski
and
W.
Domcke
,
Phys. Chem. Chem. Phys.
6
,
2763
(
2004
).
9.
M.
Merchán
,
L.
Serrano-Andrés
,
M.
Robb
, and
L.
Blancafort
,
J. Am. Chem. Soc.
127
,
1820
(
2005
).
10.
S.
Perun
,
A. L.
Sobolewski
, and
W.
Domcke
,
J. Am. Chem. Soc.
127
,
6257
(
2005
).
11.
S.
Perun
,
A. L.
Sobolewski
, and
W.
Domcke
,
Chem. Phys.
313
,
107
(
2005
).
12.
M. Z.
Zgierski
,
S.
Patchkovskii
,
T.
Fujiwara
, and
E. C.
Lim
,
J. Phys. Chem. A
109
,
9384
(
2005
).
13.
M. Z.
Zgierski
,
S.
Patchkovskii
, and
E. C.
Lim
,
J. Chem. Phys.
123
,
081101
(
2005
).
14.
K.
Tomić
,
T.
Jörg
, and
C. M.
Marian
,
J. Phys. Chem. A
109
,
8410
(
2005
).
15.
M.
Merchán
,
R.
Gonzalez-Luque
,
T.
Climent
,
L.
Serrano-Andrés
,
E.
Rodriuguez
,
M.
Reguero
, and
D.
Pelaez
,
J. Phys. Chem. B
110
,
26471
(
2006
).
16.
S.
Perun
,
A. L.
Sobolewski
, and
W.
Domcke
,
J. Phys. Chem. A
110
,
13238
(
2006
).
17.
L.
Serrano-Andres
,
M.
Merchan
, and
A. C.
Borin
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
8691
(
2006
).
18.
K. A.
Kistler
and
S.
Matsika
,
J. Phys. Chem. A
111
,
2650
(
2007
).
19.
L.
Blancafort
,
Photochem. Photobiol.
83
,
603
(
2007
).
20.
H. R.
Huddock
,
B. G.
Levine
,
A. L.
Thompson
,
H.
Satzger
,
D.
Townsend
,
N.
Gador
,
S.
Ullrich
,
A.
Stolow
, and
T. J.
Martinez
,
J. Phys. Chem. A
111
,
8500
(
2007
).
21.
M. Z.
Zgierski
,
T.
Fujiwara
,
W. G.
Kofron
, and
E. C.
Lim
,
Phys. Chem. Chem. Phys.
9
,
3206
(
2007
).
22.
L.
Blancafort
and
M. A.
Robb
,
J. Phys. Chem. A
108
,
10609
(
2004
).
23.
S.
Matsika
,
J. Phys. Chem. A
109
,
7538
(
2005
).
24.
J.
Katriel
and
E. R.
Davidson
,
Chem. Phys. Lett.
76
,
259
(
1980
).
25.
S.
Matsika
and
D. R.
Yarkony
,
J. Chem. Phys.
117
,
6907
(
2002
).
26.
S.
Matsika
and
D. R.
Yarkony
,
J. Am. Chem. Soc.
125
,
10672
(
2003
).
27.
S.
Matsika
and
D. R.
Yarkony
,
J. Am. Chem. Soc.
125
,
12428
(
2003
).
28.
M.
Schuurman
and
D. R.
Yarkony
,
J. Chem. Phys.
124
,
124109
(
2006
).
29.
M.
Schuurman
and
D. R.
Yarkony
,
J. Phys. Chem. B
110
,
19031
(
2006
).
30.
M.
Schuurman
and
D. R.
Yarkony
,
J. Chem. Phys.
124
,
244103
(
2006
).
31.
J. D.
Coe
and
T. J.
Martinez
,
J. Am. Chem. Soc.
127
,
4560
(
2005
).
32.
K. A.
Kistler
and
S.
Matsika
,
Photochem. Photobiol.
83
,
611
(
2007
).
33.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
34.
H.
Lischka
,
M.
Dallos
,
P. G.
Szalay
,
D. R.
Yarkony
, and
R.
Shepard
,
J. Chem. Phys.
120
,
7322
(
2004
).
35.
M.
Dallos
,
H.
Lischka
,
R.
Shepard
,
D. R.
Yarkony
, and
P. G.
Szalay
,
J. Chem. Phys.
120
,
7330
(
2004
).
36.
W. T.
Borden
and
E. R.
Davidson
,
Acc. Chem. Res.
29
,
67
(
1996
).
37.
Z. B.
Maksić
,
D.
Barić
, and
I.
Petanjek
,
J. Phys. Chem. A
104
,
10873
(
2000
).
38.
K.
Jug
and
A. M.
Köster
,
J. Am. Chem. Soc.
112
,
6772
(
1990
).
39.
S.
Kuwajima
and
Z. G.
Soos
,
J. Am. Chem. Soc.
109
,
107
(
1987
).
40.
M. V.
Jhigalko
,
O. V.
Shishkin
,
L.
Gorb
, and
J.
Leszczynski
,
J. Mol. Struct.
693
,
153
(
2004
).
41.
J.
Lorentzon
,
M. P.
Fülscher
, and
B. O.
Roos
,
J. Am. Chem. Soc.
117
,
9265
(
1995
).
42.
M. P.
Fülscher
and
B. O.
Roos
,
J. Am. Chem. Soc.
117
,
2089
(
1995
).
43.
M. P.
Fülscher
,
L.
Serrano-Andrés
, and
B. O.
Roos
,
J. Am. Chem. Soc.
119
,
6168
(
1997
).
44.
H.
Lischka
,
R.
Shepard
,
F. B.
Brown
, and
I.
Shavitt
,
Int. J. Quantum Chem., Quantum Chem. Symp.
15
,
91
(
1981
).
45.
H.
Lischka
,
R.
Shepard
,
R. M.
Pitzer
,
I.
Shavitt
,
M.
Dallos
,
T.
Müller
,
P. G.
Szalay
,
M.
Seth
,
G. S.
Kedziora
,
S.
Yabushita
, and
Z.
Zhang
,
Phys. Chem. Chem. Phys.
3
,
664
(
2001
).
46.
H.
Lischka
,
R.
Shepard
,
I.
Shavitt
,
R. M.
Pitzer
,
M.
Dallos
,
T.
Müller
,
P. G.
Szalay
,
F. B.
Brown
,
R.
Ahlrichs
,
H. J.
Böhm
,
A.
Chang
,
D. C.
Comeau
,
R.
Gdanitz
,
H.
Dachsel
,
C.
Ehrhardt
,
M.
Ernzerhof
,
P.
Höchtl
,
S.
Irle
,
G.
Kedziora
,
T.
Kovar
,
V.
Parasuk
,
M. J. M.
Pepper
,
P.
Scharf
,
H.
Schiffer
,
M.
Schindler
,
M.
Schüler
,
M.
Seth
,
E. A.
Stahlberg
,
J.-G.
Zhao
,
S.
Yabushita
, and
Z.
Zhang
, COLUMBUS, an ab initio electronic structure program, Release 5.8,
2001
.
47.
H.
Lischka
,
M.
Dallos
, and
R.
Shepard
,
Mol. Phys.
100
,
1647
(
2002
).
48.
G.
Schaftenaar
and
J. H.
Noordik
,
J. Comput.-Aided Mol. Des.
14
,
123
(
2000
).
49.
ORIGIN, Pro 7.5 SR6 v7.5885 (B885), OriginLab Corporation, Northampton, MA,
2006
.
50.
S. P.
Keating
and
C. A.
Mead
,
J. Chem. Phys.
82
,
5102
(
1985
).
51.
S.
Han
and
D. R.
Yarkony
,
J. Chem. Phys.
119
,
11561
(
2003
).
52.
D. E.
Manolopoulos
and
M. S.
Child
,
Phys. Rev. Lett.
82
,
2223
(
1999
).
53.
S.
Han
and
D. R.
Yarkony
,
J. Chem. Phys.
119
,
5058
(
2003
).
54.
J.
Samuel
and
A.
Dhar
,
Phys. Rev. Lett.
87
,
260401
(
2001
).
55.
I. B. H.
Lengsfield
,
P.
Saxe
, and
D. R.
Yarkony
,
J. Chem. Phys.
81
,
4549
(
1984
).
56.
D.
Yarkony
,
J. Phys. Chem. A
101
,
4263
(
1997
).
57.
D.
Yarkony
,
J. Chem. Phys.
112
,
2111
(
2000
).
58.
G. J.
Atchity
,
S. S.
Xantheas
, and
K.
Ruedenberg
,
J. Chem. Phys.
95
,
1862
(
1991
).
59.
D. R.
Yarkony
,
J. Phys. Chem. A
105
,
6277
(
2001
).
60.
D. R.
Yarkony
,
Acc. Chem. Res.
31
,
511
(
1998
).
61.
See EPAPS Document No. E-JCPSA6-128-034822. This file contains additional plots of two-state seam paths and branching plane loop data as described in the text. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.
62.
R. J.
Renka
and
A. K.
Cline
,
Rocky Mt. J. Math.
14
,
119
(
1984
).
63.
K. A.
Kistler
and
S.
Matsika
,
J. Phys. Chem. A
111
,
8708
(
2007
).

Supplementary Material

You do not currently have access to this content.