Since the discovery of ozone depletion, the doublet electronic states of the ozone radical cation have received much attention in experimental and theoretical investigations, while the low-lying quartet states have not. In the present research, viable pathways to the quartet states from the lowest three triplet states of ozone, A23, B23, and B13, and excitations from the A12 and B22 states of the ozone radical cation have been studied in detail. The potential energy surfaces, structural optimizations, and vibrational frequencies for several states of ozone and its radical cation have been thoroughly investigated using the complete active space self-consistent field, unrestricted coupled cluster theory from a restricted open-shell Hartree-Fock reference including all single and double excitations (UCCSD), UCCSD method with the effects of connected triple excitations included perturbatively, and unrestricted coupled cluster including all single, double, and triple excitations with the effects of connected quadruple excitations included perturbatively. These methods used Dunning’s correlation-consistent polarized core-valence basis sets, cc-pCVXZ (X=D, T, Q, and 5). The most feasible pathways (symmetry and spin allowed transitions) to the quartet states are A14A23, A24A23, A14B23, A24B13, B24B13, A24A11, B24A11, and A14A11 with vertical ionization potentials of 12.46, 12.85, 12.82, 12.46, 12.65, 13.43, 13.93, and 14.90eV, respectively.

1.
N. J.
Mason
and
S. K.
Pathak
,
Contemp. Phys.
38
,
289
(
1997
).
2.
R. P.
Wayne
,
Chemistry of Atmospheres
, 3rd ed. (
Oxford University Press
,
Oxford
,
2000
).
3.
V.
Vaida
and
J. D.
Simons
,
Science
268
,
1443
(
1995
).
4.
J.
Chappuis
,
C. R. Acad. Sci.
91
,
985
(
1880
).
5.
R.
Bacis
,
A. J.
Bouvier
, and
J. M.
Flaud
,
Spectrochim. Acta, Part A
54
,
17
(
1998
).
6.
J. I.
Steinfeld
,
S. M.
Adlergolden
, and
J. W.
Gallagher
,
J. Phys. Chem. Ref. Data
16
,
911
(
1987
).
7.
J. M.
Flaud
and
R.
Bacis
,
Spectrochim. Acta, Part A
54
,
3
(
1998
).
8.
V. G.
Tyuterev
,
S.
Tashkun
,
P.
Jensen
,
A.
Barbe
, and
T.
Cours
,
J. Mol. Spectrosc.
198
,
57
(
1999
).
9.
D. H.
Magers
,
W. N.
Lipscomb
,
R. J.
Bartlett
, and
J. F.
Stanton
,
J. Chem. Phys.
91
,
1945
(
1989
).
10.
J. D.
Watts
,
J. F.
Stanton
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
178
,
471
(
1991
).
11.
J. D.
Watts
and
R. J.
Bartlett
,
J. Chem. Phys.
108
,
2511
(
1998
).
12.
T.
Tanaka
and
Y.
Morino
,
J. Mol. Spectrosc.
33
,
538
(
1970
).
13.
J. C.
Depannemaecker
and
J.
Bellet
,
J. Mol. Spectrosc.
66
,
106
(
1977
).
14.
A.
Barbe
,
A.
Chichery
,
T.
Cours
,
V. G.
Tyuterev
, and
J. J.
Plateaux
,
J. Mol. Struct.
616
,
55
(
2002
).
15.
A.
Barbe
,
C.
Secroun
, and
P.
Jouve
,
J. Mol. Spectrosc.
49
,
171
(
1974
).
16.
P.
Borowski
,
M.
Fulcher
,
P. A.
Malmqvist
, and
B. O.
Roos
,
Chem. Phys. Lett.
237
,
195
(
1995
).
17.
S. M.
Anderson
and
K.
Mauersberger
,
J. Geophys. Res., [Atmos.]
100
,
3033
(
1995
).
18.
U.
Wachsmuth
and
B.
Abel
,
J. Geophys. Res., [Atmos.]
108
,
4473
(
2003
).
19.
S. F.
Deppe
,
U.
Wachsmuth
,
B.
Abel
,
M.
Bittererova
,
S. Y.
Grebenshchikov
,
R.
Siebert
, and
R.
Schinke
,
J. Chem. Phys.
121
,
5191
(
2004
).
20.
D. W.
Arnold
,
C. S.
Xu
,
E. H.
Kim
, and
D. M.
Neumark
,
J. Chem. Phys.
101
,
912
(
1994
).
21.
J. D.
Watts
and
R. J.
Bartlett
,
Spectrochim. Acta, Part A
55
,
495
(
1999
).
22.
C. R.
Brundle
,
Chem. Phys. Lett.
26
,
25
(
1974
).
23.
T.
Cvitas
,
L.
Klasinc
, and
B.
Kovac
,
Int. J. Quantum Chem.
29
,
657
(
1986
).
24.
J. M.
Dyke
,
L.
Golob
,
N.
Jonathan
,
A.
Morris
, and
M.
Okuda
,
J. Chem. Soc., Faraday Trans. 2
70
,
1828
(
1974
).
25.
D. C.
Frost
,
S. T.
Lee
, and
C. A.
McDowell
,
Chem. Phys. Lett.
24
,
149
(
1974
).
26.
S.
Katsumata
,
H.
Shiromaru
, and
T.
Kimura
,
Bull. Chem. Soc. Jpn.
57
,
1784
(
1984
).
27.
T. N.
Radwan
and
D. W.
Turner
,
J. Chem. Soc. A
1966
,
85
.
28.
M. J.
Weiss
,
J.
Berkowitz
, and
E. H.
Appelman
,
J. Chem. Phys.
66
,
2049
(
1977
).
29.
A.
Mocellin
,
K.
Wiesner
,
F.
Burmeister
,
O.
Bjorneholm
, and
A. N.
de Brito
,
J. Chem. Phys.
115
,
5041
(
2001
).
30.
J. T.
Moseley
,
J. B.
Ozenne
, and
P. C.
Cosby
,
J. Chem. Phys.
74
,
337
(
1981
).
31.
M.
Probst
,
K.
Hermansson
,
J.
Urban
,
P.
Mach
,
D.
Muigg
,
G.
Denifl
,
T.
Fiegele
,
N. J.
Mason
,
A.
Stamatovic
, and
T. D.
Mark
,
J. Chem. Phys.
116
,
984
(
2002
).
32.
S.
Willitsch
,
F.
Innocenti
,
J. M.
Dyke
, and
F.
Merkt
,
J. Chem. Phys.
122
,
24311
(
2005
).
33.
H.
Couto
,
A.
Mocellin
,
C. D.
Moreira
,
M. P.
Gomes
,
A. N.
de Brito
, and
M. C. A.
Lopes
,
J. Chem. Phys.
124
,
204311
(
2006
).
34.
P. J.
Hay
,
T. H.
Dunning
, and
W. A.
Goddard
,
J. Chem. Phys.
62
,
3912
(
1975
).
35.
H.
Basch
,
J. Am. Chem. Soc.
97
,
6047
(
1975
).
36.
L. S.
Cederbaum
,
W.
Domcke
,
W.
von Niessen
, and
W. P.
Kraemer
,
Mol. Phys.
34
,
381
(
1977
).
37.
N.
Kosugi
,
H.
Kuroda
, and
S.
Iwata
,
Chem. Phys.
58
,
267
(
1981
).
38.
P.
Malquist
,
H.
Agren
, and
B. O.
Roos
,
Chem. Phys. Lett.
98
,
444
(
1983
).
39.
T.
Schmelz
,
G.
Chambaud
,
P.
Rosmus
,
H.
Koppel
,
L. S.
Cederbaum
, and
H. J.
Werner
,
Chem. Phys. Lett.
183
,
209
(
1991
).
40.
H.
Muller
,
H.
Koppel
, and
L. S.
Cederbaum
,
New J. Chem.
17
,
7
(
1993
).
41.
H.
Muller
,
H.
Koppel
, and
L. S.
Cederbaum
,
J. Chem. Phys.
101
,
10263
(
1994
).
42.
H.
Muller
,
H.
Koppel
,
L. S.
Cederbaum
,
T.
Schmelz
,
G.
Chambaud
, and
P.
Rosmus
,
Chem. Phys. Lett.
197
,
599
(
1992
).
43.
M. H.
Palmer
and
A. D.
Nelson
,
Mol. Phys.
100
,
3601
(
2002
).
44.
K.
Wiesner
,
R. F.
Fink
,
S. L.
Sorensen
,
M.
Andersson
,
R.
Feifel
,
I.
Hjelte
,
C.
Miron
,
A. N.
de Brito
,
L.
Rosenqvist
,
H.
Wang
,
S.
Svensson
, and
O.
Bjorneholm
,
Chem. Phys. Lett.
375
,
76
(
2003
).
45.
Y.
Ohtsuka
,
J.
Hasegawa
, and
H.
Nakatsuji
,
Chem. Phys.
332
,
262
(
2007
).
46.
M. L.
Vestal
and
G. H.
Mauclaire
,
J. Chem. Phys.
67
,
3767
(
1977
).
47.
M. J.
Weiss
,
J.
Berkowitz
, and
E. H.
Appelman
,
J. Chem. Phys.
66
,
2049
(
1977
).
48.
J. T.
Moseley
,
J. B.
Ozenne
, and
P. C.
Cosby
,
J. Chem. Phys.
74
,
337
(
1981
).
49.
J. F.
Hiller
and
M. L.
Vestal
,
J. Chem. Phys.
77
,
1248
(
1982
).
50.
S. P.
Goss
and
J. D.
Morrison
,
J. Chem. Phys.
76
,
5175
(
1982
).
51.
A.
Mocellin
,
K.
Wiesner
,
F.
Burmeister
,
O.
Bjorneholm
, and
A. N.
de Brito
,
J. Chem. Phys.
115
,
5041
(
2001
).
52.
C. E.
Dykstra
,
H. F.
Schaefer
, and
W.
Meyer
,
J. Chem. Phys.
65
,
2740
(
1976
).
53.
W.
Meyer
,
J. Chem. Phys.
64
,
2901
(
1976
).
54.
C. E.
Dykstra
,
R. A.
Chiles
, and
M. D.
Garrett
,
J. Comput. Chem.
2
,
266
(
1981
).
55.
H. J.
Werner
and
E. A.
Reinsch
,
J. Chem. Phys.
76
,
3144
(
1982
).
56.
A. C.
Scheiner
,
G. E.
Scuseria
,
T. J.
Lee
,
J. E.
Rice
, and
H. F.
Schaefer
,
J. Chem. Phys.
87
,
5391
(
1987
).
57.
G. D.
Purvis
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
58.
G. E.
Scuseria
,
C. L.
Janssen
, and
H. F.
Schaefer
,
J. Chem. Phys.
89
,
7382
(
1988
).
59.
G. E.
Scuseria
,
A. C.
Scheiner
,
T. J.
Lee
,
J. E.
Rice
, and
H. F.
Schaefer
,
J. Chem. Phys.
86
,
2881
(
1987
).
60.
G. E.
Scuseria
,
Chem. Phys. Lett.
176
,
27
(
1991
).
61.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
62.
G. E.
Scuseria
and
T. J.
Lee
,
J. Chem. Phys.
93
,
5851
(
1990
).
63.
D. E.
Woon
and
T. H.
Dunning
,
J. Chem. Phys.
103
,
4572
(
1995
).
64.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
65.
R. D.
Amos
,
A.
Bernhardsson
,
A.
Berning
, et al, MOLPRO,
2002
.
66.
R.
Lindh
,
U.
Ryu
, and
B.
Liu
,
J. Chem. Phys.
95
,
5889
(
1991
).
67.
R.
Lindh
,
Theor. Chim. Acta
85
,
423
(
1993
).
68.
G.
Rauhut
,
A. E.
Azhary
,
F.
Eckert
,
U.
Schumann
, and
H. J.
Werner
,
Spectrochim. Acta, Part A
55
,
651
(
1999
).
69.
M. J. O.
Deegan
and
P. J.
Knowles
,
Chem. Phys. Lett.
227
,
321
(
1994
).
70.
C.
Hampel
and
H. J.
Werner
,
J. Chem. Phys.
104
,
6286
(
1996
).
71.
M.
Schutz
and
H. J.
Werner
,
Chem. Phys. Lett.
318
,
370
(
2000
).
72.
M.
Schutz
,
J. Chem. Phys.
113
,
9986
(
2000
).
73.
J. F.
Stanton
,
J.
Gauss
,
J. D.
Watts
,
P. G.
Szalay
,
R. J.
Bartlett
, with contributions from
A. A.
Auer
,
D. B.
Bernholdt
,
O.
Christiansen
,
M. E.
Harding
,
M.
Heckert
,
O.
Heun
,
C.
Huber
,
D.
Jonsson
,
J.
Jusélius
,
W. J.
Lauderdale
,
T.
Metzroth
,
C.
Michauk
,
D. R.
Price
,
K.
Ruud
,
F.
Schiffmann
,
A.
Tajti
,
M. E.
Varner
,
J.
Vázquez
, and the integral packages: MOLECULE (
J.
Almlöf
and
P. R.
Taylor
,), PROPS (
P. R.
Taylor
), and ABACUS (
T.
Helgaker
,
H. J. Aa.
Jensen
,
P.
Jørgensen
, and
J.
Olsen
).
74.
J. F.
Stanton
,
J.
Gauss
,
J. D.
Watts
,
W. J.
Lauderdale
, and
R. J.
Bartlett
,
Int. J. Quantum Chem., Quantum Chem. Symp.
26
,
879
(
1992
).
75.
P. G.
Szalay
,
J.
Gauss
, and
J. F.
Stanton
,
Theor. Chim. Acta
100
,
5
(
1998
).
76.
J.
Gauss
and
J. F.
Stanton
,
J. Chem. Phys.
104
,
2574
(
1996
).
77.
M.
Kállay
and
J.
Gauss
,
J. Chem. Phys.
120
,
6841
(
2004
).
78.
S. A.
Kucharski
,
J. Chem. Phys.
97
,
4282
(
1992
).
79.
N.
Oliphant
,
J. Chem. Phys.
95
,
6645
(
1991
).
80.
M.
Kállay
and
P. R.
Surjan
,
J. Chem. Phys.
115
,
2945
(
2001
).
81.
M.
Kállay
,
P. G.
Szalay
, and
P. R.
Surjan
,
J. Chem. Phys.
117
,
980
(
2002
).
82.
M.
Kállay
,
J.
Gauss
, and
P. G.
Szalay
,
J. Chem. Phys.
119
,
2991
(
2003
).
83.
M.
Kállay
and
J.
Gauss
,
J. Chem. Phys.
121
,
9257
(
2004
).
84.
M.
Kállay
and
J.
Gauss
,
J. Chem. Phys.
123
,
214105
(
2005
).
85.
K. P.
Huber
and
G.
Herzberg
,
Molecular Spectra and Molecular Structure IV: Constants of Diatomic Molecules
(
Van Nostrand Reinhold
,
New York
,
1979
).
86.
C. E.
Moore
,
Atomic Energy Levels As Derived from the Analysis of Optical Spectra
(
National Bureau of Standards
,
Gaithersburg, MD
,
1949
), pp.
43
.
87.
R. G.
Tonkyn
,
J. W.
Winniczek
, and
M. G.
White
,
Chem. Phys. Lett.
164
,
137
(
1989
).
88.
A. J.
Bouvier
,
D.
Inard
,
V.
Veyret
,
B.
Bussery
,
R.
Bacis
,
S.
Churassy
,
J.
Brion
,
J.
Malicet
, and
R. H.
Judge
,
J. Mol. Spectrosc.
190
,
189
(
1998
).
89.
M.
Allan
,
N. J.
Mason
, and
J. A.
Davies
,
J. Chem. Phys.
105
,
5665
(
1996
).
90.
See EPAPS Document No. E-JCPSA6-128-023821 for additional energy predictions pertaining to this study. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.

Supplementary Material

You do not currently have access to this content.