Ab initio molecular dynamics simulations with hybrid density functionals have so far found little application due to their computational cost. In this work, an implementation of the Hartree–Fock exchange is presented that is specifically targeted at ab initio molecular dynamics simulations of medium sized systems. We demonstrate that our implementation, which is available as part of the CP2K/Quickstep program, is robust and efficient. Several prescreening techniques lead to a linear scaling cost for integral evaluation and storage. Integral compression techniques allow for in-core calculations on systems containing several thousand basis functions. The massively parallel implementation respects integral symmetry and scales up to hundreds of CPUs using a dynamic load balancing scheme. A time-reversible multiple time step scheme, exploiting the difference in computational efficiency between hybrid and local functionals, brings further time savings. With extensive simulations of liquid water, we demonstrate the ability to perform, for several tens of picoseconds, ab initio molecular dynamics based on hybrid functionals of systems in the condensed phase containing a few thousand Gaussian basis functions.

1.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
2.
The CP2K developers group, http://cp2k.berlios.de/ (
2008
).
3.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
,
Comput. Phys. Commun.
167
,
103
(
2005
).
4.
G.
Lippert
,
J.
Hutter
, and
M.
Parrinello
,
Theor. Chem. Acc.
103
,
124
(
1999
).
5.
A. D.
Becke
and
E. R.
Johnson
,
J. Chem. Phys.
127
,
124108
(
2007
).
6.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
7.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
8.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
9.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
10.
M.
Ernzerhof
,
J. P.
Perdew
, and
K.
Burke
,
Int. J. Quantum Chem.
64
,
285
(
1997
).
11.
M.
Ernzerhof
and
G. E.
Scuseria
,
J. Chem. Phys.
110
,
5029
(
1999
).
12.
F.
Gygi
and
A.
Baldereschi
,
Phys. Rev. B
34
,
4405
(
1986
).
13.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
8207
(
2003
).
14.
A. V.
Krukau
,
O. A.
Vydrov
,
A. F.
Izmaylov
, and
G. E.
Scuseria
,
J. Chem. Phys.
125
,
224106
(
2006
).
15.
A. J.
Cohen
,
P.
Mori-Sanchez
, and
W.
Yang
,
J. Chem. Phys.
126
,
191109
(
2007
).
16.
D. L.
Strout
and
G. E.
Scuseria
,
J. Chem. Phys.
102
,
8448
(
1995
).
17.
W.
Kohn
,
Int. J. Quantum Chem.
56
,
229
(
1995
).
18.
S.
Goedecker
,
Rev. Mod. Phys.
71
,
1085
(
1999
).
19.
J.
Almlöf
,
K.
Faegri
, and
K.
Korsell
,
J. Comput. Chem.
3
,
385
(
1982
).
20.
J. C.
Burant
,
G. E.
Scuseria
, and
M. J.
Frisch
,
J. Chem. Phys.
105
,
8969
(
1996
).
21.
E.
Schwegler
and
M.
Challacombe
,
Theor. Chem. Acc.
104
,
344
(
2000
).
22.
C.
Ochsenfeld
,
C. A.
White
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
1663
(
1998
).
24.
S.
Obara
and
A.
Saika
,
J. Chem. Phys.
84
,
3963
(
1986
).
25.
M.
Head-Gordon
and
J. A.
Pople
,
J. Chem. Phys.
89
,
5777
(
1988
).
26.
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
8
,
3072
(
2006
).
27.
A. F.
Izmaylov
,
G. E.
Scuseria
, and
M. J.
Frisch
,
J. Chem. Phys.
125
,
104103
(
2006
).
28.
J.
VandeVondele
and
J.
Hutter
,
J. Chem. Phys.
118
,
4365
(
2003
).
29.
M. P.
Fülscher
and
P. -O.
Widmark
,
J. Comput. Chem.
14
,
8
(
1993
).
30.
A. V.
Mitin
,
J.
Baker
,
K.
Wlinski
, and
P.
Pulay
,
J. Comput. Chem.
24
,
154
(
2003
).
31.
S. W.
de Leeuw
,
J. W.
Perram
, and
E. R.
Smith
,
Proc. R. Soc. London, Ser. A
373
,
27
(
1980
).
32.
R.
Dovesi
,
R.
Orlando
,
C.
Roetti
,
C.
Pisani
, and
V. R.
Saunders
,
Phys. Status Solidi
217
,
63
(
2000
).
33.
K. N.
Kudin
and
G. E.
Scuseria
,
Phys. Rev. B
61
,
16440
(
2000
).
34.
S.
Hammes-Schiffer
and
H. C.
Andersen
,
J. Chem. Phys.
101
,
375
(
1994
).
35.
L.
Hedin
,
Phys. Rev.
139
,
A796
(
1965
).
36.
C. J.
Tymczak
,
V.
Weber
,
E.
Schwegler
, and
M.
Challacombe
,
J. Chem. Phys.
122
,
124105
(
2005
).
37.
M. E.
Tuckerman
,
B. J.
Berne
, and
G. J.
Martyna
,
J. Chem. Phys.
97
,
1990
(
1992
).
38.
E.
Anglada
,
J.
Junquera
, and
J. M.
Soler
,
Phys. Rev. E
68
,
055701
(
2003
).
39.
G. J.
Martyna
,
M. E.
Tuckerman
,
D. J.
Tobias
, and
M. L.
Klein
,
Mol. Phys.
87
,
1117
(
1996
).
40.
P. F.
Batcho
and
T.
Schlick
,
J. Chem. Phys.
115
,
4019
(
2001
).
41.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
124
,
219906
(
2006
).
42.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
43.
T.
Hashimoto
,
K.
Hirao
, and
H.
Tatewaki
,
Chem. Phys. Lett.
243
,
190
(
1995
).
44.
E. R.
Davidson
,
Chem. Phys. Lett.
260
,
514
(
1996
).
45.
J.
Gräfenstein
,
E.
Kraka
, and
D.
Cremer
,
Phys. Chem. Chem. Phys.
6
,
1096
(
2004
).
46.
J.
VandeVondele
and
M.
Sprik
,
Phys. Chem. Chem. Phys.
7
,
1363
(
2005
).
47.
A. K.
Soper
,
Chem. Phys.
258
,
121
(
2000
).
48.
G.
Hura
,
J. M.
Sorenson
,
R. M.
Glaeser
, and
T.
Head-Gordon
,
J. Chem. Phys.
113
,
9140
(
2000
).
49.
P.
Wernet
,
D.
Nordlund
,
U.
Bergmann
,
M.
Cavalleri
,
M.
Odelius
,
H.
Ogasawara
,
L. A.
Naslund
,
T. K.
Hirsh
,
L.
Ojamae
,
P.
Glatzel
,
L. G. M.
Pettersson
, and
A.
Nilsson
,
Science
304
,
995
(
2004
).
50.
M.
Leetmaa
,
M.
Ljungberg
,
H.
Ogasawara
,
M.
Odelius
,
L. -A.
Naslund
,
A.
Nilsson
, and
L. G. M.
Pettersson
,
J. Chem. Phys.
125
,
244510
(
2006
).
51.
A.
Rahman
and
F. H.
Stillinger
,
J. Chem. Phys.
55
,
3336
(
1971
).
52.
K.
Laasonen
,
M.
Sprik
,
M.
Parrinello
, and
R.
Car
,
J. Chem. Phys.
99
,
9080
(
1993
).
53.
M.
Sprik
,
J.
Hutter
, and
M.
Parrinello
,
J. Chem. Phys.
105
,
1142
(
1996
).
54.
P. L.
Silvestrelli
and
M.
Parrinello
,
Phys. Rev. Lett.
82
,
3308
(
1999
).
55.
P.
Vassilev
,
C.
Hartnig
,
M. T. M.
Koper
,
F.
Frechard
, and
R. A.
van Santen
,
J. Chem. Phys.
115
,
9815
(
2001
).
56.
S.
Izvekov
and
G. A.
Voth
,
J. Chem. Phys.
116
,
10372
(
2002
).
57.
D.
Asthagiri
,
L. R.
Pratt
, and
J. D.
Kress
,
Phys. Rev. E
68
,
041505
(
2003
).
58.
B.
Chen
,
I.
Ivanov
,
M. L.
Klein
, and
M.
Parrinello
,
Phys. Rev. Lett.
91
,
215503
(
2003
).
59.
J. C.
Grossman
,
E.
Schwegler
,
E. W.
Draeger
,
F.
Gygi
, and
G.
Galli
,
J. Chem. Phys.
120
,
300
(
2004
).
60.
I. F. W.
Kuo
,
C. J.
Mundy
,
M. J.
McGrath
,
J. I.
Siepmann
,
J.
VandeVondele
,
M.
Sprik
,
J.
Hutter
,
B.
Chen
,
M. L.
Klein
,
F.
Mohamed
,
M.
Krack
, and
M.
Parrinello
,
J. Phys. Chem. B
108
,
12990
(
2004
).
61.
M. V.
Fernandez-Serra
and
E.
Artacho
,
J. Chem. Phys.
121
,
11136
(
2004
).
62.
J.
VandeVondele
,
F.
Mohamed
,
M.
Krack
,
J.
Hutter
,
M.
Sprik
, and
M.
Parrinello
,
J. Chem. Phys.
122
,
014515
(
2005
).
63.
P. H. L.
Sit
and
N.
Marzari
,
J. Chem. Phys.
122
,
204510
(
2005
).
64.
M. J.
McGrath
,
J. I.
Siepmann
,
I. F. W.
Kuo
,
C. J.
Mundy
,
J.
VandeVondele
,
J.
Hutter
,
F.
Mohamed
, and
M.
Krack
,
J. Phys. Chem. A
110
,
640
(
2006
).
65.
I. F. W.
Kuo
,
C. J.
Mundy
,
M. J.
McGrath
, and
J. I.
Siepmann
,
J. Chem. Theory Comput.
2
,
1274
(
2006
).
66.
M. J.
McGrath
,
J. I.
Siepmann
,
I. F. W.
Kuo
, and
C. J.
Mundy
,
Mol. Phys.
104
,
3619
(
2006
).
67.
H. -S.
Lee
and
M. E.
Tuckerman
,
J. Chem. Phys.
125
,
154507
(
2006
).
68.
T.
Todorova
,
A. P.
Seitsonen
,
J.
Hutter
,
I. -F. W.
Kuo
, and
C. J.
Mundy
,
J. Phys. Chem. B
110
,
3685
(
2006
).
69.
M. W.
Mahoney
and
W. L.
Jorgensen
,
J. Chem. Phys.
112
,
8910
(
2000
).
70.
J.
VandeVondele
and
J.
Hutter
,
J. Chem. Phys.
127
,
114105
(
2007
).
71.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
,
Phys. Rev. Lett.
100
,
146401
(
2008
).
72.
M.
Dal Peraro
,
S.
Raugei
,
P.
Carloni
, and
M. L.
Klein
,
ChemPhysChem
6
,
1715
(
2005
).
You do not currently have access to this content.