The reactivity of the strained (SiO)2-four atom ring defect at the silica surfaces has been studied in a cluster approach adopting the ONIOM2[B3LYP6-31+G(d,p):MNDO] method to compute the ring opening reaction by interaction with H2O and NH3. The vibrational “fingerprints” of the isolated defect are computed at 921, 930, and 934cm1 in reasonable agreement with experimental evidence on amorphous silica outgassed at T>900K. The opening of the (SiO)2-four-member ring by the considered molecules is exergonic and the actual value depends on the possible constraints enforced on the reaction products by the silica surrounding. The free kinetic energy barriers result from the interplay between the nucleophilic/electrophilic character of the adsorbed molecule and are 22 and 25kcalmol1 for NH3 and H2O, respectively. All free energy profiles envisage an activated complex in which the nucleophilic part of the molecule interacts on the coordinatively strained silicon atom of the (SiO)2 defect followed by the proton transfer from the coordinated molecule towards the oxygen of the defective ring. Calculations show that this step can be speed up by the presence of more than one adsorbed molecule or even more (about seven orders of magnitude), by the copresence of water molecules acting as “proton transfer helpers.” In these cases, the free energy barriers decrease to 13 and 15kcalmol1 for NH3 and H2O, respectively. For the case of H2O adsorption, benchmark test calculations reveal that MP2, BLYP, and B3LYP energy profiles are in very good agreement with each other, whereas for PBE, both the reaction energy and the activation barrier are underestimated. Present data also show that the molecular model mimicking the (SiO)2 defect is far less reactive than what appears to occur on the real defect at the surface of amorphous silica. So, only a combination of some further geometrical strains imparted by the solid on the (SiO)2 defect, not accounted for by the cluster models, and higher adsorbate loadings are needed to reharmonize experiment and simulation. Notwithstanding, the vibrational features of the reaction products have been characterized and support the available experimental measurements.

1.
R. K.
Klier
,
The Chemsitry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica
(
Wiley
,
New York
,
1979
).
2.
J.
Nawrocki
,
J. Chromatogr., A
779
,
29
(
1997
).
3.
J.
Sauer
,
P.
Ugliengo
,
E.
Garrone
, and
V. R.
Saunders
,
Chem. Rev. (Washington, D.C.)
94
,
2095
(
1994
).
4.
L. T.
Zhuravlev
,
Langmuir
3
,
316
(
1987
).
5.
V.
Bolis
,
B.
Fubini
,
L.
Marchese
,
G.
Martra
, and
D.
Costa
,
J. Chem. Soc., Faraday Trans.
87
,
497
(
1991
).
6.
B. C.
Bunker
,
D. M.
Haaland
,
K. J.
Ward
,
T. A.
Michalske
,
W. L.
Smith
,
J. S.
Binkley
,
C. F.
Melius
, and
C. A.
Balfe
,
Surf. Sci.
210
,
406
(
1989
).
7.
B. A.
Morrow
and
I. A.
Cody
,
J. Phys. Chem.
79
,
761
(
1975
).
8.
F.
Boccuzzi
,
S.
Coluccia
,
G.
Ghiotti
,
C.
Morterra
, and
A.
Zecchina
,
J. Phys. Chem.
82
,
1298
(
1978
).
9.
B. C.
Bunker
,
D. M.
Haaland
,
T. A.
Michalske
, and
W. L.
Smith
,
Surf. Sci.
222
,
95
(
1989
).
10.
B. A.
Morrow
and
I. A.
Cody
,
J. Phys. Chem.
80
,
1995
(
1976
).
11.
B. A.
Morrow
and
I. A.
Cody
,
J. Phys. Chem.
80
,
1998
(
1976
).
12.
B. A.
Morrow
,
I. A.
Cody
, and
L. S. M.
Lee
,
J. Phys. Chem.
80
,
2761
(
1976
).
13.
S.
Bordiga
,
P.
Ugliengo
,
A.
Damin
,
C.
Lamberti
,
G.
Spoto
,
A.
Zecchina
,
G.
Spano
,
R.
Buzzoni
,
L.
Dalloro
, and
F.
Rivetti
,
Trans. Inst. Electr. Eng. Jpn., Part C
15
,
53
(
2001
).
14.
A. M.
Ferrari
,
E.
Garrone
,
G.
Spoto
,
P.
Ugliengo
, and
A.
Zecchina
,
Surf. Sci.
323
,
151
(
1995
).
15.
M.
Wilson
and
T. R.
Walsh
,
J. Chem. Phys.
113
,
9180
(
2000
).
16.
T. R.
Walsh
,
M.
Wilson
, and
A. P.
Sutton
,
J. Chem. Phys.
113
,
9191
(
2000
).
17.
M.-H.
Du
,
A.
Kolchin
, and
H.-P.
Cheng
,
J. Chem. Phys.
119
,
6418
(
2003
).
18.
M.-H.
Du
,
A.
Kolchin
, and
H.-P.
Cheng
,
J. Chem. Phys.
120
,
1044
(
2004
).
19.
D.
Ceresoli
,
M.
Bernasconi
,
S.
Iarlori
,
M.
Parrinello
, and
E.
Tosatti
,
Phys. Rev. Lett.
84
,
3887
(
2000
).
20.
S.
Iarlori
,
D.
Ceresoli
,
M.
Bernasconi
,
D.
Donadio
, and
M.
Parrinello
,
J. Phys. Chem. B
105
,
8007
(
2001
).
21.
P.
Masini
and
M.
Bernasconi
,
J. Phys.: Condens. Matter
14
,
4133
(
2002
).
22.
S. T.
Bromley
,
M. A.
Zwijnenburg
, and
T.
Maschmeyer
,
Phys. Rev. Lett.
90
,
035502
(
2003
).
23.
S. T.
Bromley
and
F.
Illas
,
Phys. Chem. Chem. Phys.
9
,
1078
(
2007
).
24.
E.
Flikkema
and
S. T.
Bromley
,
J. Phys. Chem. B
108
,
9638
(
2004
).
25.
A.
Rimola
,
S.
Tosoni
,
M.
Sodupe
, and
P.
Ugliengo
,
Chem. Phys. Lett.
408
,
295
(
2005
).
26.
A.
Rimola
,
S.
Tosoni
,
M.
Sodupe
, and
P.
Ugliengo
,
ChemPhysChem
7
,
157
(
2006
).
27.
A.
Rimola
,
M.
Sodupe
, and
P.
Ugliengo
,
J. Am. Chem. Soc.
129
,
8333
(
2007
).
28.
B.
Civalleri
,
S.
Casassa
,
E.
Garrone
,
C.
Pisani
, and
P.
Ugliengo
,
J. Phys. Chem. B
103
,
2165
(
1999
).
29.
B.
Civalleri
and
P.
Ugliengo
,
J. Phys. Chem. B
104
,
9491
(
2000
).
30.
A.
Rimola
,
M.
Sodupe
,
S.
Tosoni
,
B.
Civalleri
, and
P.
Ugliengo
,
Langmuir
22
,
6593
(
2006
).
31.
32.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
33.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
34.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al., GAUSSIAN 03 (
Gaussian Inc.
, Wallingford, CT,
2004
).
35.
D.
McQuarrie
,
Statistical Mechanics
(
Harper and Row
,
New York
,
1986
).
36.
P. W.
Atkins
,
Physical Chemistry
, 5th ed. (
Oxford University Press
,
Oxford
,
1995
).
37.
A. J.
Chalk
and
L.
Radom
,
J. Am. Chem. Soc.
119
,
7573
(
1997
).
38.
J. W.
Gauld
,
H.
Audier
,
J.
Fossey
, and
L.
Radom
,
J. Am. Chem. Soc.
118
,
6299
(
1996
).
39.
J. W.
Gauld
and
L.
Radom
,
J. Am. Chem. Soc.
119
,
9831
(
1997
).
You do not currently have access to this content.