In a previous paper [Beyvers et al, J. Chem. Phys.124, 234706 (2006)], the possibility to mode and state selectively excite various vibrational modes of a CO molecule adsorbed on a dissipative Cu(100) surface by shaped IR pulses was examined. Reduced-dimensionality models with stretching-only coordinates were employed to do so. This model is now extended with the goal to include rotational modes. First, we present an analysis of the bound states of the adsorbed CO molecule in full dimension; i.e., six-dimensional eigenstates are obtained by diagonalizing the six-dimensional Hamiltonian containing the semiempirical potential of Tully et al [J. Vac. Sci. Technol. A11, 1914 (1993)]. This is achieved by using a contracted iterative eigensolver based on the coupled two-term Lanczos algorithm with full reorthogonalization. Reduced-dimension subsystem eigenvectors are also computed and then used to study the selective excitation of the molecule in the presence of dissipation within the density matrix formalism for open systems. In the density matrix propagations, up to four degrees of freedom were included, namely, r (the C–O distance), Z (the molecule-surface distance), and ϕ and θ (the azimuthal and polar angles of the molecular axis with respect to the surface). Short, intense laser pulses are rationally engineered and further refined with optimal control theory, again with the goal for mode and state selective excitation. Also, IR-laser induced desorption is studied. For the calculations, the previous two-mode (r,Z) dipole surface is extended to include the angular dependence and the model for the coupling of the molecule to the surface electronic degrees of freedom is refined.

1.
N.
Camilone
 III
,
K.
Khan
,
P.
Lasky
,
L.
Wu
,
J.
Moryl
, and
R.
Osgood
, Jr.
,
J. Chem. Phys.
109
,
8045
(
1998
).
2.
M.
Bonn
,
S.
Funk
,
C.
Hess
,
D.
Denzler
,
C.
Stampfl
,
M.
Scheffler
,
M.
Wolf
, and
G.
Ertl
,
Science
285
,
1042
(
1999
).
3.
N.
Koumura
,
R.
Zijlstra
,
R.
van Delden
,
B.
Harada
, and
N.
Freinga
,
Nature (London)
401
,
152
(
1999
).
4.
C.
Joachim
,
J.
Gimzewski
, and
A.
Aviram
,
Nature (London)
408
,
541
(
2000
).
6.
K.
Watanabe
,
N.
Takagi
, and
Y.
Matsumoto
,
Chem. Phys. Lett.
366
,
606
(
2002
).
7.
D.
Denzler
,
C.
Frischkorn
,
C.
Hess
,
M.
Wolf
, and
G.
Ertl
,
Phys. Rev. Lett.
91
,
226102
(
2003
).
8.
K.
Hoki
,
M.
Yamaki
, and
Y.
Fujimara
,
Angew. Chem., Int. Ed.
42
,
2976
(
2003
).
9.
K.
Hoki
,
M.
Yamaki
,
R.
Shnoun
,
L.
González
,
S.
Keseci
, and
Y.
Fujimara
,
J. Phys. Chem. B
108
,
4916
(
2004
).
10.
D.
Denzler
,
C.
Frischkorn
,
M.
Wolf
, and
G.
Ertl
,
J. Phys. Chem. B
108
,
14503
(
2004
).
11.
L.
Bartels
,
F.
Wang
,
D.
Möller
,
T.
Knoesel
, and
E.
Heinz
,
Science
305
,
648
(
2004
).
12.
K.
Stépan
,
J.
Güdde
, and
U.
Höffer
,
Phys. Rev. Lett.
94
,
236103
(
2005
).
13.
I.
Andrianov
and
P.
Saalfrank
,
Chem. Phys. Lett.
350
,
191
(
2001
).
14.
I.
Andrianov
and
P.
Saalfrank
,
J. Chem. Phys.
124
,
034710
(
2006
).
15.
J.
Tully
,
M.
Gomez
, and
M.
Head-Gordon
,
J. Vac. Sci. Technol. A
11
,
1914
(
1993
).
18.
M.
Shapiro
and
P.
Brumer
,
J. Chem. Phys.
98
,
201
(
1993
).
19.
K.
Blum
,
Density Matrix Theory and Applications
(
Plenum
,
New York
,
1996
).
20.
K.
Nakagami
,
Y.
Ohtsuki
, and
Y.
Fujimara
,
Chem. Phys. Lett.
360
,
91
(
2002
).
21.
K.
Finger
and
P.
Saalfrank
,
Chem. Phys. Lett.
268
,
291
(
1997
).
22.
A.
Abe
,
K.
Yamashita
, and
P.
Saalfrank
,
Phys. Rev. B
67
,
235411
(
2003
).
23.
G.
Paramonov
,
S.
Beyvers
,
I.
Andrianov
, and
P.
Saalfrank
,
Phys. Rev. B
75
,
045405
(
2007
).
24.
D.
Kröner
,
T.
Klamroth
,
M.
Nest
, and
P.
Saalfrank
,
Appl. Phys. A: Mater. Sci. Process.
88
,
535
(
2007
).
25.
P.
Saalfrank
and
G.
Paramonov
,
J. Chem. Phys.
107
,
10723
(
1997
).
26.
G.
Paramonov
and
P.
Saalfrank
,
Chem. Phys. Lett.
301
,
509
(
1999
).
27.
Z.
Liu
,
L.
Feldman
,
N.
Tolk
,
Z.
Zhang
, and
P.
Cohen
,
Science
312
,
1024
(
2006
).
29.
M.
Bonn
,
C.
Hess
, and
M.
Wolf
,
J. Chem. Phys.
115
,
7725
(
2001
).
30.
H.
Guo
,
P.
Saalfrank
, and
T.
Seideman
,
Prog. Surf. Sci.
62
,
239
(
1999
).
31.
P.
Saalfrank
,
Chem. Rev. (Washington, D.C.)
106
,
4116
(
2006
).
32.
G.
Paramonov
,
I.
Andrianov
, and
P.
Saalfrank
,
J. Phys. Chem. C
111
,
5432
(
2007
).
33.
A.
Peirce
,
M.
Dahleh
, and
H.
Rabitz
,
Phys. Rev. A
37
,
4950
(
1988
).
34.
R.
Kosloff
,
S.
Rice
,
P.
Gaspard
,
S.
Tersigni
, and
D.
Tannor
,
Chem. Phys.
139
,
201
(
1989
).
35.
S.
Shi
and
H.
Rabitz
,
J. Chem. Phys.
92
,
364
(
1990
).
36.
Y.
Ohtsuki
,
W.
Zu
, and
H.
Rabitz
,
J. Chem. Phys.
110
,
9825
(
1999
).
37.
Y.
Ohtsuki
,
K.
Nakagami
,
W.
Zhu
, and
H.
Rabitz
,
Chem. Phys.
287
,
197
(
2003
).
38.
S.
Beyvers
,
Y.
Ohtsuki
, and
P.
Saalfrank
,
J. Chem. Phys.
124
,
234706
(
2006
).
39.
A.
Bahel
and
Z.
Bačić
,
J. Chem. Phys.
111
,
11164
(
1999
).
40.
K.
Husimi
,
Proc. Phys. Math. Soc. Jpn.
22
,
264
(
1940
).
41.
J. M. Bowman, private communication (October 12,
2007
).
42.
S.
Carter
,
S.
Culik
, and
J.
Bowman
,
J. Chem. Phys.
107
,
10458
(
1997
).
43.
S.
Park
,
J. M.
Bowman
, and
D.
Jelski
,
J. Chem. Phys.
104
,
2457
(
1995
).
44.
X.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
117
,
6923
(
2002
).
45.
H.-G.
Yu
,
J. Chem. Phys.
117
,
8190
(
2002
).
46.
X.
Wang
and
T.
Carrington
, Jr.
,
Int. J. Quantum Chem.
99
,
556
(
2004
).
47.
J.
Tremblay
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
125
,
094311
(
2006
).
48.
R. W.
Freund
and
N. M.
Nachtigal
,
Linear Algebra for Large Scale and Real-Time Applications
(
Kluwer
,
Dordrecht
,
1993
).
49.
R. W.
Freund
and
N. M.
Nachtigal
,
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
15
,
313
(
1994
).
50.
H. O.
Karlsson
and
S.
Holmgren
,
J. Chem. Phys.
117
,
9116
(
2002
).
51.
E. R.
Davidson
,
J. Comput. Phys.
17
,
87
(
1975
).
52.
W. H.
Press
,
S. A. S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in FORTRAN 77: The Art of Scientific Programming
(
Cambridge University Press
,
Cambridge
,
1986
).
53.
G. H.
Golub
and
C. F. V.
Loan
,
Matrix Computations
(
John Hopkins University Press
,
Baltimore
,
1989
).
54.
F.
Sartoretto
,
G.
Gambpmato
, and
G.
Pini
,
J. Comput. Phys.
81
,
53
(
1989
).
55.
L. N.
Trefethen
and
D.
Bau
 III
,
Numerical Linear Algebra
(
Society for Industrial and Applied Mathematics
,
Philadelphia
,
1997
).
56.
Y.
Saad
,
Iterative Methods for Sparse Linear Systems
(
Society for Industrial and Applied Mathematics
,
Philadelphia
,
2003
).
57.
P.
Arbenz
,
U. L.
Hetmaniuk
,
R. B.
Lehoucq
, and
R. S. S.
Tuminaro
,
Int. J. Numer. Methods Eng.
64
,
204
(
2005
).
58.
Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide
, edited by
Z.
Bai
,
J.
Demmel
,
J.
Dongarra
,
A.
Ruhe
, and
H.
van der Vorst
(
Society for Industrial and Applied Mathematics
,
Philadelphia
,
2000
).
59.
G. W.
Stewart
,
Matrix Algorithms Volume II: Eigensystems
(
Society for Industrial and Applied Mathematics
,
Philadelphia
,
2001
).
60.
M. J.
Bramley
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
101
,
8494
(
1994
).
61.
Z.
Bačić
and
J. C.
Light
,
J. Chem. Phys.
86
,
3065
(
1987
).
62.
J. C.
Light
,
I. P.
Hamilton
, and
J. V.
Lill
,
J. Chem. Phys.
82
,
1400
(
1985
).
63.
J. T.
Muckerman
,
Chem. Phys. Lett.
173
,
200
(
1990
).
64.
C.
Leforestier
,
J. Chem. Phys.
94
,
6388
(
1991
).
65.
D. T.
Colbert
and
W. H.
Miller
,
J. Chem. Phys.
96
,
1982
(
1992
).
66.
J.
Echave
and
D. C.
Clary
,
Chem. Phys. Lett.
190
,
225
(
1992
).
67.
M. J.
Bramley
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
99
,
8519
(
1993
).
68.
H.
Wei
,
J. Chem. Phys.
106
,
6885
(
1997
).
69.
J. C.
Light
and
T.
Carrington
, Jr.
,
Adv. Chem. Phys.
114
,
263
(
2000
).
70.
H.-G.
Yu
,
J. Chem. Phys.
122
,
164107
(
2005
).
71.
H.
Köppel
,
W.
Domcke
, and
L. S.
Cederbaum
,
Adv. Chem. Phys.
57
,
59
(
1984
).
72.
R. E.
Wyatt
,
Adv. Chem. Phys.
73
,
231
(
1989
).
73.
A.
McNichols
and
T.
Carrington
, Jr.
,
Chem. Phys. Lett.
202
,
464
(
1993
).
74.
M. R.
Wall
and
D.
Neuhauser
,
J. Chem. Phys.
102
,
8011
(
1995
).
75.
T. P.
Grozdanov
,
V. A.
Mandelshtam
, and
H. S.
Taylor
,
J. Chem. Phys.
103
,
7990
(
1995
).
76.
H.-G.
Yu
and
S. C.
Smith
,
Ber. Bunsenges. Phys. Chem.
101
,
400
(
1997
).
77.
R.
Chen
and
H.
Guo
,
J. Chem. Phys.
108
,
6068
(
1998
).
78.
X.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
115
,
9781
(
2001
).
79.
C.
Hirschmugl
,
F.
Hofmann
,
G.
Williams
, and
Y.
Chabal
,
Phys. Rev. Lett.
65
,
480
(
1990
).
80.
F.
Hofmann
and
J.
Toennies
,
Chem. Rev. (Washington, D.C.)
96
,
1307
(
1996
).
81.
A.
Graham
,
F.
Hofmann
,
J.
Toennies
,
G.
Williams
,
C.
Hirschmugl
, and
J.
Ellis
,
J. Chem. Phys.
108
,
7825
(
1998
).
82.
G.
Lindblad
,
Commun. Math. Phys.
48
,
119
(
1976
).
83.
M.
Morin
,
N.
Levinos
, and
A.
Harris
,
J. Chem. Phys.
96
,
3950
(
1992
).
84.
M.
Head-Gordon
and
J.
Tully
,
J. Chem. Phys.
96
,
3939
(
1992
).
85.
J.
Ricart
,
A.
Clotet
,
F.
Illas
, and
J.
Rubio
,
J. Chem. Phys.
100
,
1988
(
1994
).
86.
A.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
87.
P.
Hay
and
W.
Wadt
,
J. Chem. Phys.
82
,
270
(
1985
).
88.
K.
Sundermann
and
R.
de Vivie-Riedle
,
J. Chem. Phys.
110
,
1896
(
1999
).
89.
S.
Chelkowski
,
A. D.
Bandrauk
, and
P. B.
Corkum
,
Phys. Rev. Lett.
65
,
2355
(
1990
).
90.
R.
Unanyan
,
M.
Fleischhauer
,
B. W.
Shore
, and
K.
Bergmann
,
Opt. Commun.
155
,
144
(
1998
).
91.
V.
Kurkal
and
S.
Rice
,
Chem. Phys. Lett.
344
,
125
(
2001
).
You do not currently have access to this content.