A new method based on absolutely localized molecular orbitals (ALMOs) is proposed to measure the degree of intermolecular electron density delocalization (charge transfer) in molecular complexes. ALMO charge transfer analysis (CTA) enables separation of the forward and backward charge transfer components for each pair of molecules in the system. The key feature of ALMO CTA is that all charge transfer terms have corresponding well defined energetic effects that measure the contribution of the given term to the overall energetic stabilization of the system. To simplify analysis of charge transfer effects, the concept of chemically significant complementary occupied-virtual orbital pairs (COVPs) is introduced. COVPs provide a simple description of intermolecular electron transfer effects in terms of just a few localized orbitals. ALMO CTA is applied to understand fundamental aspects of donor-acceptor interactions in borane adducts, synergic bonding in classical and nonclassical metal carbonyls, and multiple intermolecular hydrogen bonds in a complex of isocyanuric acid and melamine. These examples show that the ALMO CTA results are generally consistent with the existing conceptual description of intermolecular bonding. The results also show that charge transfer and the energy lowering due to charge transfer are not proportional to each other, and some interesting differences emerge which are discussed. Additionally, according to ALMO CTA, the amount of electron density transferred between molecules is significantly smaller than charge transfer estimated from various population analysis methods.

1.
J.-M.
Lehn
,
Supramolecular Chemistry: Concepts and Perspectives
(
VCH
,
Weinheim
,
1995
).
2.
J. W.
Steed
and
J. L.
Atwood
,
Supramolecular Chemistry
(
Wiley
,
New York
,
2000
).
3.
G.
Desiraju
and
T.
Steiner
,
The Weak Hydrogen Bond in Structural Chemistry and Biology
(
Oxford University Press
,
New York
,
1999
).
4.
G. A.
Jeffrey
,
An Introduction to Hydrogen Bonding
(
Oxford University Press
,
Oxford
,
1997
).
5.
S.
Scheiner
,
Hydrogen Bonding: A Theoretical Perspective
(
Oxford University Press
,
Oxford
,
1997
).
6.
A.
van der Vaart
and
K. M.
Merz
,
J. Am. Chem. Soc.
121
,
9182
(
1999
).
7.
A.
van der Vaart
and
K. M.
Merz
,
Int. J. Quantum Chem.
77
,
27
(
2000
).
8.
Comprehensive Coordination Chemistry: The Synthesis, Reactions, Properties, and Applications of Coordination Compounds
, edited by
G.
Wilkinson
,
R.
Gillard
, and
J.
McCleverty
(
Pergamon
,
New York
,
1987
).
9.
Y.
Jean
,
Molecular Orbitals of Transition Metal Complexes
(
Oxford University Press
,
Oxford
,
2005
).
10.
A. E.
Shilov
, Metal Complexes in Biomimetic Chemical Reactions: N2 Fixation in Solution, Activation, and Oxidation of Alkanes, Chemical Models of Photosynthesis (
CRC
,
Boca Raton, New York
,
1997
).
11.
G. J.
Kubas
, Metal Dihydrogen and σ-bond Complexes: Structure, Theory and Reactivity (
Kluwer
,
New York
,
2002
).
12.
Theoretical Aspects of Homogeneous Catalysis: Applications of ab initio Molecular Orbital Theory
, edited by
P.
van Leeuwen
,
K.
Morokuma
, and
J. H.
van Lenth
(
Kluwer
,
Boston
,
1995
).
13.
A. J.
Stone
,
The Theory of Intermolecular Forces
(
Oxford University Press
,
New York
,
1996
).
14.
K.
Kitaura
and
K.
Morokuma
,
Int. J. Quantum Chem.
10
,
325
(
1976
).
15.
W. J.
Stevens
and
W. H.
Fink
,
Chem. Phys. Lett.
139
,
15
(
1987
).
16.
W.
Chen
and
M. S.
Gordon
,
J. Phys. Chem.
100
,
14316
(
1996
).
17.
P. S.
Bagus
,
K.
Hermann
, and
C. W.
Bauschlicher
,
J. Chem. Phys.
80
,
4378
(
1984
).
18.
P. S.
Bagus
and
F.
Illas
,
J. Chem. Phys.
96
,
8962
(
1992
).
19.
E. D.
Glendening
and
A.
Streitwieser
,
J. Chem. Phys.
100
,
2900
(
1994
).
20.
G. K.
Schenter
and
E. D.
Glendening
,
J. Phys. Chem.
100
,
17152
(
1996
).
21.
E. D.
Glendening
,
J. Phys. Chem. A
109
,
11936
(
2005
).
22.
Y.
Mochizuki
,
K.
Fukuzawa
,
A.
Kato
,
S.
Tanaka
,
K.
Kitaura
, and
T.
Nakano
,
Chem. Phys. Lett.
410
,
247
(
2005
).
23.
J.
Korchowiec
and
T.
Uchimaru
,
J. Chem. Phys.
112
,
1623
(
2000
).
24.
A.
van der Vaart
and
K. M.
Merz
,
J. Phys. Chem. A
103
,
3321
(
1999
).
25.
Y. R.
Mo
,
J. L.
Gao
, and
S. D.
Peyerimhoff
,
J. Chem. Phys.
112
,
5530
(
2000
).
26.
R. Z.
Khaliullin
,
E. A.
Cobar
,
R. C.
Lochan
,
A. T.
Bell
, and
M.
Head-Gordon
,
J. Phys. Chem. A
111
,
8753
(
2007
).
27.
R.
Bader
,
Atoms in Molecules: A Quantum Theory
(
Oxford University Press
,
New York
,
1994
).
28.
E.
Francisco
,
A. M.
Pendas
, and
M. A.
Blanco
,
J. Chem. Theory Comput.
2
,
90
(
2006
).
29.
A. D.
Becke
and
K. E.
Edgecombe
,
J. Chem. Phys.
92
,
5397
(
1990
).
30.
A.
Savin
,
R.
Nesper
,
S.
Wengert
, and
T. F.
Fassler
,
Angew. Chem., Int. Ed. Engl.
36
,
1809
(
1997
).
31.
B.
Silvi
and
A.
Savin
,
Nature (London)
371
,
683
(
1994
).
32.
F. L.
Hirshfeld
,
Theor. Chim. Acta
44
,
129
(
1977
).
33.
A. E.
Reed
,
R. B.
Weinstock
, and
F.
Weinhold
,
J. Chem. Phys.
83
,
735
(
1985
).
34.
R. S.
Mulliken
,
J. Chem. Phys.
23
,
1833
(
1955
).
35.
R. S.
Mulliken
,
J. Chem. Phys.
23
,
1841
(
1955
).
36.
P. O.
Lowdin
,
J. Chem. Phys.
18
,
365
(
1950
).
37.
K. E.
Edgecombe
and
R. J.
Boyd
,
J. Chem. Soc., Faraday Trans. 2
83
,
1307
(
1987
).
38.
K. R.
Roby
,
Mol. Phys.
27
,
81
(
1974
).
39.
K. R.
Roby
,
Mol. Phys.
28
,
1441
(
1974
).
40.
J.
Pipek
,
J. Mol. Struct.: THEOCHEM
501
,
395
(
2000
).
41.
R. Z.
Khaliullin
,
M.
Head-Gordon
, and
A. T.
Bell
,
J. Chem. Phys.
124
,
204105
(
2006
).
42.
H.
Stoll
,
G.
Wagenblast
, and
H.
Preuss
,
Theor. Chim. Acta
57
,
169
(
1980
).
43.
J. M.
Cullen
,
Int. J. Quantum Chem., Quantum Chem. Symp.
25
,
193
(
1991
).
44.
E.
Gianinetti
,
M.
Raimondi
, and
E.
Tornaghi
,
Int. J. Quantum Chem.
60
,
157
(
1996
).
45.
T.
Nagata
,
O.
Takahashi
,
K.
Saito
, and
S.
Iwata
,
J. Chem. Phys.
115
,
3553
(
2001
).
46.
A.
Fornili
,
M.
Sironi
, and
M.
Raimondi
,
J. Mol. Struct.: THEOCHEM
632
,
157
(
2003
).
47.
M.
Sironi
,
A.
Genoni
,
M.
Civera
,
S.
Pieraccini
, and
M.
Ghitti
,
Theor. Chem. Acc.
117
,
685
(
2007
).
48.
S.
Dapprich
and
G.
Frenking
,
J. Phys. Chem.
99
,
9352
(
1995
).
49.
J. P.
Foster
and
F.
Weinhold
,
J. Am. Chem. Soc.
102
,
7211
(
1980
).
50.
J. S.
Dewar
,
Bull. Soc. Chim. Fr.
18
,
C71
(
1951
).
51.
J.
Chatt
and
L. A.
Duncanson
,
J. Chem. Soc.
,
2929
(
1953
).
52.
W. Z.
Liang
and
M.
Head-Gordon
,
J. Phys. Chem. A
108
,
3206
(
2004
).
53.
W. Z.
Liang
and
M.
Head-Gordon
,
J. Chem. Phys.
120
,
10379
(
2004
).
54.
I.
Mayer
and
A.
Hamza
,
Int. J. Quantum Chem.
103
,
798
(
2005
).
55.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
56.
Y.
Shao
,
L. F.
Molnar
,
Y.
Jung
,
J.
Kussmann
,
C.
Ochsenfeld
,
S. T.
Brown
,
A. T. B.
Gilbert
,
L. V.
Slipchenko
,
S. V.
Levchenko
,
D. P.
O’Neill
,
R. A.
DiStasio
,
R. C.
Lochan
,
T.
Wang
,
G. J. O.
Beran
,
N. A.
Besley
,
J. M.
Herbert
,
C. Y.
Lin
,
T.
Van Voorhis
,
S. H.
Chien
,
A.
Sodt
,
R. P.
Steele
,
V. A.
Rassolov
,
P. E.
Maslen
,
P. P.
Korambath
,
R. D.
Adamson
,
B.
Austin
,
J.
Baker
,
E. F. C.
Byrd
,
H.
Dachsel
,
R. J.
Doerksen
,
A.
Dreuw
,
B. D.
Dunietz
,
A. D.
Dutoi
,
T. R.
Furlani
,
S. R.
Gwaltney
,
A.
Heyden
,
S.
Hirata
,
C. P.
Hsu
,
G.
Kedziora
,
R. Z.
Khalliulin
,
P.
Klunzinger
,
A. M.
Lee
,
M. S.
Lee
,
W.
Liang
,
I.
Lotan
,
N.
Nair
,
B.
Peters
,
E. I.
Proynov
,
P. A.
Pieniazek
,
Y. M.
Rhee
,
J.
Ritchie
,
E.
Rosta
,
C. D.
Sherrill
,
A. C.
Simmonett
,
J. E.
Subotnik
,
H. L.
Woodcock
,
W.
Zhang
,
A. T.
Bell
,
A. K.
Chakraborty
,
D. M.
Chipman
,
F. J.
Keil
,
A.
Warshel
,
W. J.
Hehre
,
H. F.
Schaefer
,
J.
Kong
,
A. I.
Krylov
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
8
,
3172
(
2006
).
57.
G. N.
Lewis
,
J. Franklin Inst.
226
,
293
(
1938
).
58.
R. G.
Pearson
,
J. Am. Chem. Soc.
85
,
3533
(
1963
).
59.
H. L.
Finston
and
A. C.
Rychtman
,
A New View of Current Acid-Base Theories
(
Wiley
,
New York
,
1982
).
60.
D. R.
Lloyd
and
N.
Lynaugh
,
J. Chem. Soc., Faraday Trans. 2
68
,
947
(
1972
).
61.
D. B.
Beach
and
W. L.
Jolly
,
Inorg. Chem.
24
,
567
(
1985
).
62.
W. C.
Ermler
,
F. D.
Glasser
, and
C. W.
Kern
,
J. Am. Chem. Soc.
98
,
3799
(
1976
).
63.
C. W.
Bauschlicher
and
A.
Ricca
,
Chem. Phys. Lett.
237
,
14
(
1995
).
64.
V.
Jonas
,
G.
Frenking
, and
M. T.
Reetz
,
J. Am. Chem. Soc.
116
,
8741
(
1994
).
65.
S.
Erhardt
and
G.
Frenking
,
Chem.-Eur. J.
12
,
4620
(
2006
).
66.
Y. R.
Mo
,
L. C.
Song
,
W.
Wu
, and
Q. N.
Zhang
,
J. Am. Chem. Soc.
126
,
3974
(
2004
).
67.
C. S.
Brauer
,
M. B.
Craddock
,
J.
Kilian
,
E. M.
Grumstrup
,
M. C.
Orilall
,
Y. R.
Mo
,
J. L.
Gao
, and
K. R.
Leopold
,
J. Phys. Chem. A
110
,
10025
(
2006
).
68.
Y. R.
Mo
and
J. L.
Gao
,
J. Phys. Chem. A
105
,
6530
(
2001
).
69.
M. B.
Hall
and
R. F.
Fenske
,
Inorg. Chem.
11
,
768
(
1972
).
70.
F.
Aubke
and
C.
Wang
,
Coord. Chem. Rev.
137
,
483
(
1994
).
71.
M. A.
Lynn
and
B. E.
Bursten
,
Inorg. Chim. Acta
229
,
437
(
1995
).
72.
A. J.
Lupinetti
,
S. H.
Strauss
, and
G.
Frenking
,
Prog. Inorg. Chem.
49
,
1
(
2001
).
73.
S. H.
Strauss
,
J. Chem. Soc. Dalton Trans.
1
(
2000
).
74.
A. J.
Lupinetti
,
G.
Frenking
, and
S. H.
Strauss
,
Angew. Chem., Int. Ed.
37
,
2113
(
1998
).
75.
C. A.
Brown
,
K. S.
Jeong
,
R. H.
Poppenga
,
B.
Puschner
,
D. M.
Miller
,
A. E.
Ellis
,
K. I.
Kang
,
S.
Sum
,
A. M.
Cistola
, and
S. A.
Brown
,
J. Vet. Diagn. Invest
19
,
525
(
2007
).
77.
R. Z.
Khaliullin
,
M.
Head-Gordon
, and
A. T.
Bell
,
J. Phys. Chem. B
111
,
10992
(
2007
).
78.
E. A.
Cobart
,
R. Z.
Khaliullin
,
R. G.
Bergman
, and
M.
Head-Gordon
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
6963
(
2007
).
79.
R. C.
Lochan
,
R. Z.
Khaliullin
, and
M.
Head-Gordon
,
Inorg. Chem.
47
,
4032
(
2008
).
You do not currently have access to this content.