We present an implementation of a set of algorithms for performing Hartree–Fock calculations with resource requirements in terms of both time and memory directly proportional to the system size. In particular, a way of directly computing the Hartree–Fock exchange matrix in sparse form is described which gives only small addressing overhead. Linear scaling in both time and memory is demonstrated in benchmark calculations for system sizes up to 11 650 atoms and 67 204 Gaussian basis functions on a single computer with of memory. The sparsity of overlap, Fock, and density matrices as well as band gaps are also shown for a wide range of system sizes, for both linear and three-dimensional systems.
REFERENCES
1.
S.
Goedecker
, Rev. Mod. Phys.
71
, 1085
(1999
).2.
D.
Bowler
, T.
Miyazaki
, and M.
Gillan
, J. Phys.: Condens. Matter
14
, 2781
(2002
).3.
S. Y.
Wu
and C. S.
Jayanthi
, Phys. Rep.
358
, 1
(2002
).4.
E.
Rudberg
, E. H.
Rubensson
, and P.
Sałek
, ERGO version 1.6, a quantum chemistry program for large scale self-consistent field calculations (2007
).5.
E. H.
Rubensson
, E.
Rudberg
, and P.
Sałek
, J. Comput. Chem.
28
, 2531
(2007
).6.
E.
Rudberg
and P.
Sałek
, J. Chem. Phys.
125
, 084106
(2006
).7.
C.
Ochsenfeld
, C. A.
White
, and M.
Head-Gordon
, J. Chem. Phys.
109
, 1663
(1998
).8.
P.
Pulay
, Chem. Phys. Lett.
73
, 393
(1980
).9.
P.
Pulay
, J. Comput. Chem.
3
, 556
(1982
).10.
P. P. N.
Kudin
and G. E.
Scuseria
, Math. Modell. Numer. Anal.
41
, 281
(2007
).11.
C.
Saravanan
, Y.
Shao
, R.
Baer
, P. N.
Ross
, and M.
Head-Gordon
, J. Comput. Chem.
24
, 618
(2003
).12.
M.
Challacombe
, Comput. Phys. Commun.
128
, 93
(2000
).13.
F. G.
Gustavson
, ACM Trans. Math. Softw.
4
, 250
(1978
).14.
E.
Elmroth
, F.
Gustavson
, I.
Jonsson
, and B.
Kågström
, SIAM Rev.
46
, 3
(2004
).15.
A. H. R.
Palser
and D. E.
Manolopoulos
, Phys. Rev. B
58
, 12704
(1998
).16.
A. M. N.
Niklasson
, Phys. Rev. B
66
, 155115
(2002
).17.
A. M. N.
Niklasson
, C. J.
Tymczak
, and M.
Challacombe
, J. Chem. Phys.
118
, 8611
(2003
).18.
A.
Holas
, Chem. Phys. Lett.
340
, 552
(2001
).19.
D. A.
Mazziotti
, Phys. Rev. E
68
, 066701
(2003
).20.
R.
Pino
and G. E.
Scuseria
, Chem. Phys. Lett.
360
, 117
(2002
).21.
A. M. N.
Niklasson
, C. J.
Tymczak
, and H.
Røder
, Phys. Rev. B
66
, 155120
(2002
).22.
H. J.
Xiang
, W. Z.
Liang
, J.
Yang
, J. G.
Hou
, and Q.
Zhu
, J. Chem. Phys.
123
, 124105
(2005
).23.
E. H.
Rubensson
, E.
Rudberg
, and P.
Sałek
, J. Chem. Phys.
128
, 074106
(2008
).24.
X.-P.
Li
, R. W.
Nunes
, and D.
Vanderbilt
, Phys. Rev. B
47
, 10891
(1993
).25.
H.
Larsen
, J.
Olsen
, P.
Jørgensen
, and T.
Helgaker
, J. Chem. Phys.
115
, 9685
(2001
).26.
Y.
Shao
, C.
Saravanan
, M.
Head-Gordon
, and C. A.
White
, J. Chem. Phys.
118
, 6144
(2001
).27.
S.
Goedecker
and L.
Colombo
, Phys. Rev. Lett.
73
, 122
(1994
).28.
K. R.
Bates
, A. D.
Daniels
, and G. E.
Scuseria
, J. Chem. Phys.
109
, 3308
(1998
).29.
W.
Liang
, C.
Saravanan
, Y.
Shao
, R.
Baer
, A. T.
Bell
, and M.
Head-Gordon
, J. Chem. Phys.
119
, 4117
(2003
).30.
J. M.
Millam
and G. E.
Scuseria
, J. Chem. Phys.
106
, 5569
(1997
).31.
P. E.
Maslen
, C.
Ochsenfeld
, C. A.
White
, M. S.
Lee
, and M.
Head-Gordon
, J. Phys. Chem. A
102
, 2215
(1998
).32.
A. D.
Daniels
and G. E.
Scuseria
, J. Chem. Phys.
110
, 1321
(1999
).33.
M.
Challacombe
, J. Chem. Phys.
110
, 2332
(1997
).34.
E. H.
Rubensson
, N.
Bock
, E.
Holmström
, and A. M. N.
Niklasson
, J. Chem. Phys.
128
, 104105
(2008
).35.
M.
Sierka
, A.
Hogekamp
, and R.
Ahlrichs
, J. Chem. Phys.
118
, 9136
(2003
).36.
M.
Challacombe
and E.
Schwegler
, J. Chem. Phys.
106
, 5526
(1997
).37.
I.
Panas
, J.
Almlöf
, and M. W.
Feyereisen
, Int. J. Quantum Chem.
40
, 797
(1991
).38.
I.
Panas
and J.
Almlöf
, Int. J. Quantum Chem.
42
, 1073
(1992
).39.
C. A.
White
, B. G.
Johnson
, P. M. W.
Gill
, and M.
Head-Gordon
, Chem. Phys. Lett.
230
, 8
(1994
).40.
M.
Challacombe
, E.
Schwegler
, and J.
Almlöf
, J. Chem. Phys.
104
, 4685
(1995
).41.
C. K.
Gan
, C.
Tymczak
, and M.
Challacombe
, J. Chem. Phys.
121
, 6608
(2004
).42.
C. A.
White
, B. G.
Johnson
, P. M. W.
Gill
, and M.
Head-Gordon
, Chem. Phys. Lett.
253
, 268
(1996
).43.
M. A.
Watson
, P.
Sałek
, P.
Macak
, and T.
Helgaker
, J. Chem. Phys.
121
, 2915
(2004
).44.
E.
Schwegler
, M.
Challacombe
, and M.
Head-Gordon
, J. Chem. Phys.
109
, 8764
(1998
).45.
K. N.
Kudin
and G. E.
Scuseria
, J. Chem. Phys.
111
, 2351
(1999
).46.
C. H.
Choi
, K.
Ruedenberg
, and M. S.
Gordon
, J. Comput. Chem.
22
, 1484
(2001
).47.
D. S.
Lambrecht
and C.
Ochsenfeld
, J. Chem. Phys.
123
, 184101
(2005
).48.
E.
Schwegler
and M.
Challacombe
, J. Chem. Phys.
105
, 2726
(1996
).49.
J. C.
Burant
and G. E.
Scuseria
, J. Chem. Phys.
105
, 8969
(1996
).50.
E.
Schwegler
, M.
Challacombe
, and M.
Head-Gordon
, J. Chem. Phys.
106
, 9708
(1997
).51.
E.
Schwegler
and M.
Challacombe
, J. Chem. Phys.
111
, 6223
(1999
).52.
C.
Ochsenfeld
, Chem. Phys. Lett.
327
, 216
(2000
).53.
C. K.
Gan
and M.
Challacombe
, J. Chem. Phys.
118
, 9128
(2003
);54.
55.
M.
Häser
and R.
Ahlrichs
, J. Comput. Chem.
10
, 104
(1989
).56.
Spartan ’02
(2002
), molecular modeling package by Wavefunction, Inc.58.
E. H.
Rubensson
, E.
Rudberg
, and P.
Sałek
, J. Math. Phys.
49
, 032103
(2008
).© 2008 American Institute of Physics.
2008
American Institute of Physics
You do not currently have access to this content.