Among the most important of chemical intermediates are the carbenes, characterized by a divalent carbon that generates low-lying biradical (triplet) and spin-paired (singlet) configurations with unique chemical reactivities. The “holy grail” of carbene chemistry has been determining the singlet-triplet gap and intersystem crossing rates. We report here the first high resolution spectra of singlet-triplet transitions in a prototypical singlet carbene, CHCl, which probe in detail the triplet state structure and spin-orbit coupling with the ground singlet state. Our spectra reveal a pronounced vibrational state dependence of the triplet state spin-spin splitting parameter, which we show is a sensitive probe of spin-orbit coupling with nearby singlet states. The parameters derived from our spectra, including a precise determination of the singlet-triplet energy gap, are in excellent agreement with recent ab initio calculations.

1.
See, e.g.,
Reactive Intermediate Chemistry
, edited by
R. A.
Moss
,
M. S.
Platz
, and
M.
Jones
, Jr.
(
Wiley-Interscience
,
Hoboken, NJ
,
2004
), Chaps. 7–9.
2.
See, e.g.,
G.
Herzberg
and
J.
Shoosmith
,
Nature (London)
183
,
1801
(
1959
);
G.
Herzberg
,
Proc. R. Soc. London, Ser. A
262
,
291
(
1961
).
3.
See, e.g.,
H.-G.
Yu
,
T.
Lezana-Gonzalez
,
A. J.
Marr
,
J. T.
Muckerman
, and
T. J.
Sears
,
J. Chem. Phys.
115
,
5433
(
2001
);
C.-S.
Lin
,
Y.-E.
Chen
, and
B.-C.
Chang
,
J. Chem. Phys.
121
,
4164
(
2004
);
[PubMed]
T. W.
Schmidt
,
G. B.
Bacskay
, and
S. H.
Kable
,
J. Chem. Phys.
110
,
11277
(
1999
);
C.
Tao
,
C.
Mukarakate
, and
S. A.
Reid
,
J. Chem. Phys.
124
,
224314
(
2006
), and references therein.
[PubMed]
4.
J. G.
Langan
,
E. V.
Sitzmann
, and
K. B.
Eisenthal
,
Chem. Phys. Lett.
110
,
521
(
1984
).
5.
A. R. W.
McKellar
,
P. R.
Bunker
,
T. J.
Sears
,
K. M.
Evenson
,
R. J.
Saykally
, and
S. R.
Langhoff
,
J. Chem. Phys.
79
,
5251
(
1983
).
6.
B. C.
Chang
and
T. J.
Sears
,
J. Mol. Spectrosc.
173
,
391
(
1995
);
Z.
Wang
,
R. G.
Bird
,
H.-G.
Yu
, and
T. J.
Sears
,
J. Chem. Phys.
124
,
074314
(
2006
).
7.
C.-S.
Lin
,
Y.-E.
Chen
, and
B.-C.
Chang
,
J. Chem. Phys.
121
,
4164
(
2004
).
8.
C.
Tao
,
C.
Mukarakate
, and
S. A.
Reid
,
J. Chem. Phys.
124
,
224314
(
2006
).
9.
C.
Mukarakate
,
C.
Tao
,
C. D.
Jordan
,
W. F.
Polik
, and
S. A.
Reid
,
J. Phys. Chem. A
112
,
466
(
2008
).
10.
J.
Kodet
and
R. H.
Judge
,
Comput. Phys. Commun.
176
,
601
(
2007
).
11.
N. R.
Pillsbury
,
T. S.
Zwier
,
R. H.
Judge
, and
S.
Drucker
,
J. Phys. Chem. A
111
,
8357
(
2007
).
12.
H.-G.
Yu
,
T. J.
Sears
, and
J. T.
Muckerman
,
Mol. Phys.
104
,
47
(
2006
).
13.
G.
Tarczay
,
T. A.
Miller
,
G.
Czako
, and
A. G.
Csaszar
,
Phys. Chem. Chem. Phys.
7
,
2881
(
2005
).
14.
K.
Sendt
,
T. W.
Schmidt
, and
G. B.
Bacskay
,
Int. J. Quantum Chem.
76
,
297
(
2000
).
15.
Z.
Havlas
and
J.
Michl
,
Collect. Czech. Chem. Commun.
63
,
1485
(
1998
).
You do not currently have access to this content.