Results of classical force field geometry optimizations for twisted graphene nanoribbons with a number of twists Nt varying from 0 to 7 (the case Nt=1 corresponds to a half-twist Möbius nanoribbon) are presented in this work. Their structural stability was investigated using the Brenner reactive force field. The best classical molecular geometries were used as input for semiempirical calculations, from which the electronic properties (energy levels, HOMO, LUMO orbitals) were computed for each structure. CI wavefunctions were also calculated in the complete active space framework taking into account eigenstates from HOMO4 to LUMO+4, as well as the oscillator strengths corresponding to the first optical transitions in the UV-VIS range. The lowest energy molecules were found less symmetric than initial configurations, and the HOMO-LUMO energy gaps are larger than the value found for the nanographene used to build them due to electronic localization effects created by the twisting. A high number of twists leads to a sharp increase of the HOMOLUMO transition energy. We suggest that some twisted nanoribbons could form crystals stabilized by dipolar interactions.

1.
D. M.
Walba
,
R. M.
Richards
, and
R. C.
Haltiwanger
,
J. Am. Chem. Soc.
104
,
3219
(
1982
).
2.
E.
Heilbronner
,
Tetrahedron Lett.
5
,
1923
(
1964
).
3.
P. W.
Fowler
,
Phys. Chem. Chem. Phys.
4
,
2878
(
2002
).
4.
M.
Mauksch
,
V.
Gogonea
,
H.
Jiao
, and
P.
von R. Schleyer
,
Angew. Chem., Int. Ed.
37
,
2395
(
1998
).
5.
S.
Martín-Santamaria
and
H. S.
Rzepa
,
J. Chem. Soc., Perkin Trans. 2
2000
,
2372
.
6.
S.
Martín-Santamaria
and
H. S.
Rzepa
,
J. Chem. Soc., Perkin Trans. 2
2000
,
2378
.
7.
H. S.
Rzepa
,
Org. Lett.
7
,
4637
(
2005
).
8.
H. S.
Rzepa
,
Chem. Rev. (Washington, D.C.)
105
,
3697
(
2005
).
9.
C. J.
Kastrup
,
S. P.
Oldfield
, and
H. S.
Rzepa
,
Chem. Commun. (Cambridge)
2002
,
642
.
10.
D.
Ajami
,
O.
Oeckler
,
A.
Simon
, and
R.
Herges
,
Nature (London)
426
,
819
(
2003
).
11.
D.
Ajami
,
K.
Hess
,
F.
Khler
,
C.
Nther
,
O.
Oeckler
,
A.
Simon
,
C.
Yamamoto
,
Y.
Okamoto
, and
R.
Herges
,
Chem.-Eur. J.
12
,
5434
(
2006
).
12.
E. L.
Starostin
and
G. H. M.
Van Der Heijden
,
Nat. Mater.
6
,
563
(
2007
).
13.
R.
Herges
,
Chem. Rev. (Washington, D.C.)
106
,
4820
(
2006
).
14.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
15.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
M. I.
Katsnelson
,
I. V.
Grigorieva
,
S. V.
Dubonos
, and
A. A.
Firsov
,
Nature (London)
438
,
197
(
2005
).
16.
Y.
Zhang
,
Y.-W.
Tan
,
H. L.
Stormer
, and
P.
Kim
,
Nature (London)
438
,
201
(
2005
).
17.
Y.
Zhang
,
J. P.
Small
,
M. E. S.
Amori
, and
P.
Kim
,
Phys. Rev. Lett.
94
,
176803
(
2005
).
18.
C.
Berger
,
Z.
Song
,
T.
Li
,
X.
Li
,
A. Y.
Ogbazghi
,
R.
Feng
,
Z.
Dai
,
A. N.
Marchenkov
,
E. H.
Conrad
,
P. N.
First
, and
W. A.
de Heer
,
J. Phys. Chem. B
108
,
19912
(
2004
).
19.
A. K.
Geim
and
K. S.
Novoselov
,
Nat. Mater.
6
,
183
(
2007
).
20.
M. I.
Katsnelson
,
K. S.
Novoselov
, and
A. K.
Geim
,
Nat. Phys.
2
,
620
(
2006
).
21.
J. M.
Pereira
, Jr.
,
V.
Mlinar
,
F. M.
Peeters
, and
P.
Vasilopoulos
,
Phys. Rev. B
74
,
045424
(
2006
).
22.
M. I.
Katsnelson
,
Mater. Today
10
,
20
(
2007
).
23.
Y.-W.
Son
,
M. L.
Cohen
, and
S. G.
Louie
,
Nature (London)
444
,
347
(
2006
).
24.
K.
Wakabayashi
and
K.
Harigaya
,
J. Phys. Soc. Jpn.
72
,
998
(
2003
).
25.
K.
Harigaya
,
A.
Yamashiro
,
Y.
Shimoi
, and
K.
Wakabayashi
,
Synth. Met.
152
,
261
(
2005
).
26.
D.-E.
Jiang
and
S.
Dai
, “
Spin states of zigzag-edged Mobius graphene nanoribbons from first principles
,”
J. Phys. Chem. C
(to be published);
27.
D. W.
Brenner
,
O. A.
Shenderova
,
J. A.
Harrison
,
S. J.
Stuart
,
B.
Ni
, and
S. B. J.
Sinnott
,
J. Phys.: Condens. Matter
14
,
783
(
2002
).
28.
B.
Ni
,
K.-H.
Lee
, and
S. B.
Sinnott
,
J. Phys.: Condens. Matter
16
,
7261
(
2004
).
29.
L.
Turker
,
J. Mol. Struct.: THEOCHEM
545
,
151
(
2001
).
30.
R.
Crespo
,
M. C.
Piqueras
, and
F.
Tomas
,
Synth. Met.
77
,
13
(
1996
).
31.
M. C.
Piqueras
,
R.
Crespo
,
E.
Orti
, and
F.
Tomas
,
Chem. Phys. Lett.
213
,
509
(
1993
).
32.
Z.-Y.
Ren
,
L. S.
Sheng
,
Y.-W.
Zhang
,
J. A.
Morales
, and
F.
Hagelberg
,
J. Mol. Struct.: THEOCHEM
625
,
47
(
2003
).
33.
P. W.
Fowler
and
H. S.
Rzepa
,
Phys. Chem. Chem. Phys.
8
,
1775
(
2006
).
34.
H. S.
Rzepa
,
Org. Lett.
10
,
949
(
2008
).
35.
P.
Shemella
,
Y.
Zhang
,
M.
Mailman
,
P. M.
Ajayan
, and
S. K.
Nayak
,
Appl. Phys. Lett.
91
,
042101
(
2007
).
36.
A.
Rochefort
,
D. R.
Salahub
, and
P.
Avouris
,
J. Phys. Chem. B
103
,
641
(
1999
).
37.
H.
Hosoya
,
H.
Kumazaki
,
K.
Chida
,
M.
Ohuchi
, and
Y. D.
Gao
,
Pure Appl. Chem.
62
,
445
(
1990
).
38.
K.
Nakada
,
F.
Fujita
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
,
Phys. Rev. B
54
,
17954
(
1996
).
39.
K.
Wakabayashi
,
M.
Fujita
,
H.
Ajiki
, and
M.
Sigrist
,
Phys. Rev. B
59
,
8271
(
1999
).
40.
V.
Barone
,
O.
Hod
, and
G. E.
Scuseria
,
Nano Lett.
6
,
2748
(
2006
).
41.
A. V.
Yatsenko
and
K. A.
Paseshnichenko
,
J. Mol. Model.
7
,
384
(
2001
).
You do not currently have access to this content.