The time-delayed forward scattering mechanism recently identified by Althorpe et al. [Nature (London)416, 67 (2002)] for the H+D2(v=0,j=0)HD(v=3,j=0)+D reaction was analyzed by using quasiclassical trajectory (QCT) methodology. The QCT results were found to match the quantum wavepacket snapshots of Althorpe et al., albeit without the quantum scattering effects. Trajectories were analyzed on the fly to investigate the dynamics of the atoms during the reaction. The dominant reaction mechanism progresses from hard collinear impacts, leading to direct recoil, toward glancing impacts. The increased time required for forward scattered trajectories is due to the rotation of the transient HDD complex. Forward scattered trajectories display symmetric stretch vibrations of the transient HDD complex, a signature of the presence of a resonance, or a quantum bottleneck state.

1.
F. J.
Aoiz
,
L.
Bañares
, and
V. J.
Herrero
,
Int. Rev. Phys. Chem.
24
,
119
(
2005
).
2.
E.
Wrede
,
L.
Schnieder
,
K. H.
Welge
,
F. J.
Aoiz
,
L.
Bañares
,
V. J.
Herrero
, and
B.
Martínez-Haya
,
J. Chem. Phys.
110
,
9971
(
1999
).
3.
J. D.
Ayers
,
A. E.
Pomerantz
,
F.
Fernández-Alonso
,
F.
Ausfelder
,
B. D.
Bean
, and
R. N.
Zare
,
J. Chem. Phys.
119
,
4662
(
2003
).
4.
D. X.
Dai
,
C. C.
Wang
,
S. A.
Harich
,
X. Y.
Wang
,
X. M.
Yang
,
S. D.
Chao
, and
R. T.
Skodje
,
Science
300
,
1730
(
2003
).
5.
S. C.
Althorpe
,
Int. Rev. Phys. Chem.
23
,
219
(
2004
).
6.
L.
Bañares
,
F. J.
Aoiz
, and
V. J.
Herrero
,
Phys. Scr.
73
,
C6
(
2006
).
7.
M.
Hankel
,
S. C.
Smith
,
R. J.
Allan
,
S. K.
Gray
, and
G. G.
Balint-Kurti
,
J. Chem. Phys.
125
,
164303
(
2006
).
8.
F.
Fernández-Alonso
,
B. D.
Bean
,
J. D.
Ayers
,
A. E.
Pomerantz
,
R. N.
Zare
,
L.
Bañares
, and
F. J.
Aoiz
,
Angew. Chem., Int. Ed.
39
,
2748
(
2000
).
9.
S. A.
Harich
,
D. X.
Dai
,
C. C.
Wang
,
X. M.
Yang
,
S. D.
Chao
, and
R. D.
Skodje
,
Nature (London)
419
,
281
(
2002
).
10.
R. T.
Skodje
and
X. M.
Yang
,
Int. Rev. Phys. Chem.
23
,
253
(
2004
).
11.
S. C.
Althorpe
,
F.
Fernández-Alonso
,
B. D.
Bean
,
J. D.
Ayers
,
A. E.
Pomerantz
,
R. N.
Zare
, and
E.
Wrede
,
Nature (London)
416
,
67
(
2002
).
12.
S. C.
Althorpe
,
J. Chem. Phys.
117
,
4623
(
2002
).
13.
T. C.
Allison
,
R. S.
Friedman
,
D. J.
Kaufman
, and
D. G.
Truhlar
,
Chem. Phys. Lett.
327
,
439
(
2000
).
14.
F. J.
Aoiz
,
L.
Bañares
,
M. J.
D'Mello
,
V. J.
Herrero
,
V.
Sáez Rábanos
,
L.
Schnieder
, and
R. E.
Wyatt
,
J. Chem. Phys.
101
,
5781
(
1994
).
15.
J. C.
Juanes-Marcos
,
S. C.
Althorpe
, and
E.
Wrede
,
J. Chem. Phys.
126
,
044317
(
2007
).
16.
S. J.
Greaves
,
D.
Murdock
,
E.
Wrede
, and
S. C.
Althorpe
,
J. Chem. Phys.
128
,
164306
(
2008
).
17.
D. G.
Truhlar
and
J. T.
Muckerman
, in
Atom-Molecule Collision Therory: A Guide for the Experimentalists
, edited by
R. B.
Bernstein
(
Plenum
,
New York
,
1979
), pp.
505
566
.
18.
F. J.
Aoiz
,
V. J.
Herrero
, and
V. S.
Rábanos
,
J. Chem. Phys.
94
,
7991
(
1991
).
19.
A. I.
Boothroyd
,
W. J.
Keogh
,
P. G.
Martin
, and
M. R.
Peterson
,
J. Chem. Phys.
104
,
7139
(
1996
).
20.
A.
Ralston
and
H.
Wilf
,
Mathematical Methods for Digital Computers
(
Wiley
,
London
,
1960
).
21.
L.
Bañares
,
F. J.
Aoiz
,
P.
Honvault
,
B.
Bussery-Honvault
, and
J.-M.
Launay
,
J. Chem. Phys.
118
,
565
(
2003
).
22.
D.
Sokolovski
,
Chem. Phys. Lett.
370
,
805
(
2003
).
23.
J. N. L.
Connor
,
Phys. Chem. Chem. Phys.
6
,
377
(
2004
).
24.
S. C.
Althorpe
,
J. Chem. Phys.
121
,
1175
(
2004
).
25.
D. G.
Truhlar
and
R. E.
Wyatt
,
Annu. Rev. Phys. Chem.
27
,
1
(
1976
).
26.
F. J.
Aoiz
,
V. J.
Herrero
, and
V. S.
Rábanos
,
J. Chem. Phys.
97
,
7423
(
1992
).
27.
Animations of trajectories of the mechanisms described in this paper can be accessed at http://www.durham.ac.uk/eckart.wreded/QCT/forward/.
28.
J. G.
Muga
and
R. D.
Levine
,
Chem. Phys. Lett.
162
,
7
(
1989
).
29.
P. F.
Bernath
,
Spectra of Atoms and Molecules
(
Oxford University Press
,
Oxford
,
1995
).
30.
R. D.
Levine
and
R. B.
Bernstein
,
Molecular Reaction Dynamics and Chemical Reactivity
(
Oxford University
,
Oxford
,
1987
).
You do not currently have access to this content.