The multiconfigurational time-dependent Hartree (MCTDH) approach facilitates multidimensional quantum dynamics calculations by representing the wavepacket in an optimal set of time-dependent basis functions, called single-particle functions. Choosing these single-particle functions to be themselves multidimensional wavefunctions which are represented using a MCTDH representation, a multilayer MCTDH scheme has been constructed and used for quantum dynamics calculations treating up to 1000degrees of freedom rigorously [Wang and Thoss, J. Chem. Phys.199, 1289 (2003)]. The present work gives a practical scheme which facilitates the application of the multilayer MCTDH approach, which previously has only been employed to study systems described by model-type Hamiltonians, to molecular systems described by more complicated Hamiltonians and general potential energy surfaces. A multilayer extension of the correlation discrete variable representation (CDVR) scheme employed in MCTDH calculations studying quantum dynamics on general potential energy surfaces is developed and tested in a simple numerical application. The resulting multilayer MCTDH/CDVR approach might offer a perspective to rigorously describe the quantum dynamics of larger polyatomic systems.

1.
H.-G.
Yu
,
J. Chem. Phys.
121
,
6334
(
2004
).
2.
D. W.
Schwenke
,
Spectrochim. Acta, Part A
58
,
8490
(
2002
).
3.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
119
,
101
(
2003
).
4.
A. B.
McCoy
,
X.
Huang
,
S.
Carter
, and
J.
Bowman
,
J. Chem. Phys.
123
,
064317
(
2005
).
5.
H.-G.
Yu
,
J. Chem. Phys.
125
,
204306
(
2006
).
6.
A. B.
McCoy
,
X.
Huang
,
S.
Carter
,
M. Y.
Landeweer
, and
J.
Bowman
,
J. Chem. Phys.
122
,
061101
(
2005
).
7.
O.
Vendrell
,
F.
Gatti
, and
H.-D.
Meyer
,
Angew. Chem.
46
,
6918
(
2007
).
8.
O.
Vendrell
,
F.
Gatti
,
D.
Lauvergnat
, and
H.-D.
Meyer
,
J. Chem. Phys.
127
,
184302
(
2007
).
9.
O.
Vendrell
,
F.
Gatti
, and
H.-D.
Meyer
,
J. Chem. Phys.
127
,
184303
(
2007
).
10.
F.
Huarte-Larranaga
and
U.
Manthe
,
J. Chem. Phys.
113
,
5115
(
2000
).
11.
F.
Huarte-Larranaga
and
U.
Manthe
,
J. Phys. Chem. A
105
,
2522
(
2001
).
12.
F.
Huarte-Larranaga
and
U.
Manthe
,
J. Chem. Phys.
116
,
2863
(
2002
).
13.
T.
Wu
,
H.-J.
Werner
, and
U.
Manthe
,
Science
305
,
2227
(
2004
).
14.
T.
Wu
,
H.-J.
Werner
, and
U.
Manthe
,
J. Chem. Phys.
124
,
164306
(
2006
).
15.
F.
Huarte-Larranaga
and
U.
Manthe
,
J. Chem. Phys.
117
,
4635
(
2002
).
16.
H.-D.
Meyer
,
U.
Manthe
, and
L. S.
Cederbaum
,
Chem. Phys. Lett.
165
,
73
(
1990
).
17.
U.
Manthe
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
97
,
3199
(
1992
).
18.
M. D.
Couthinho-Neto
,
A.
Viel
, and
U.
Manthe
,
J. Chem. Phys.
121
,
9207
(
2004
).
19.
A.
Raab
,
G. A.
Worth
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
110
,
936
(
1999
).
20.
C.
Cattarius
,
G. A.
Worth
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
115
,
2088
(
2001
).
21.
H.
Wang
and
M.
Thoss
,
Chem. Phys. Lett.
358
,
298
(
2002
).
22.
H.
Wang
and
M.
Thoss
,
J. Phys. Chem. A
107
,
2126
(
2003
).
23.
M. H.
Beck
,
A.
Jäckle
,
G. A.
Worth
, and
H.-D.
Meyer
,
Phys. Rep.
324
,
1
(
2000
).
24.
H.-D.
Meyer
and
G. A.
Worth
,
Theor. Chem. Acc.
109
,
251
(
2003
).
25.
U.
Manthe
,
J. Theor. Comput. Chem.
1
,
153
(
2002
).
26.
F.
Huarte-Larranaga
and
U.
Manthe
,
Z. Phys. Chem.
221
,
171
(
2007
).
27.
G. A.
Worth
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
105
,
4412
(
1996
).
28.
J. M.
Bowman
,
D.
Wang
,
X.
Huang
,
F.
Huarte-Larranaga
, and
U.
Manthe
,
J. Chem. Phys.
114
,
9683
(
2001
).
29.
M.
Ehara
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
105
,
8865
(
1996
).
30.
G. A.
Worth
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
109
,
3518
(
1998
).
31.
H.
Wang
,
J. Chem. Phys.
113
,
9948
(
2000
).
32.
H.
Wang
,
M.
Thoss
, and
W.
Miller
,
J. Chem. Phys.
115
,
2979
(
2001
).
33.
M.
Nest
and
H.-D.
Meyer
,
J. Chem. Phys.
119
,
24
(
2003
).
34.
H.
Wang
and
M.
Thoss
,
J. Chem. Phys.
119
,
1289
(
2003
).
35.
H.
Wang
,
D. E.
Skinner
, and
M.
Thoss
,
J. Chem. Phys.
125
,
174502
(
2006
).
36.
H.
Wang
and
M.
Thoss
,
J. Phys. Chem. A
111
,
10369
(
2007
).
37.
I. R.
Craig
,
M.
Thoss
, and
H.
Wang
,
J. Chem. Phys.
127
,
144503
(
2007
).
38.
A.
Jäckle
and
H.-D.
Meyer
,
J. Chem. Phys.
104
,
7974
(
1996
).
39.
A.
Jäckle
and
H.-D.
Meyer
,
J. Chem. Phys.
109
,
3772
(
1998
).
40.
U.
Manthe
,
J. Chem. Phys.
105
,
6989
(
1996
).
41.
R.
van Harrevelt
and
U.
Manthe
,
J. Chem. Phys.
121
,
5623
(
2004
).
42.
R.
van Harrevelt
and
U.
Manthe
,
J. Chem. Phys.
123
,
064107
(
2005
).
43.
H.
Wang
and
M.
Thoss
,
J. Chem. Phys.
124
,
034114
(
2006
).
44.
D. O.
Harris
,
G. G.
Engerholm
, and
W. D.
Gwinn
,
J. Chem. Phys.
43
,
1515
(
1965
).
45.
A. S.
Dickinson
and
P. R.
Certain
,
J. Chem. Phys.
49
,
4209
(
1968
).
46.
J. C.
Light
,
I. P.
Hamilton
, and
J. V.
Lill
,
J. Chem. Phys.
82
,
1400
(
1985
).
47.
D.
Kosloff
and
R.
Kosloff
,
J. Comput. Phys.
52
,
35
(
1983
).
48.
A.
Viel
,
W.
Eisfeld
,
S.
Neumann
,
W.
Domcke
, and
U.
Manthe
,
J. Chem. Phys.
124
,
214306
(
2006
).
49.
R.
Dawes
and
J. T.
Carrington
,
J. Chem. Phys.
121
,
726
(
2004
).
50.
M. H.
Beck
and
H.-D.
Meyer
,
Z. Phys. D: At., Mol. Clusters
42
,
113
(
1997
).
52.
R.
Schinke
,
M.
Nonella
,
H.
Suter
, and
J.
Huber
,
J. Chem. Phys.
93
,
1098
(
1990
).
You do not currently have access to this content.