Physical and chemical properties of liquid water are dominated by hydrogen bond structure and dynamics. Recent studies on nonlinear vibrational spectroscopy of intramolecular motion provided new insight into ultrafast hydrogen bond dynamics. However, our understanding of intermolecular dynamics of water is still limited. We theoretically investigated the intermolecular dynamics of liquid water in terms of two-dimensional infrared (2D IR) spectroscopy. The 2D IR spectrum of intermolecular frequency region (<1000cm1) is calculated by using the equilibrium and nonequilibrium hybrid molecular dynamics method. We find the ultrafast loss of the correlation of the libration motion with the time scale of approximately 110fs. It is also found that the energy relaxation from the libration motion to the low frequency motion takes place with the time scale of about 180fs. We analyze the effect of the hindered translation motion on these ultrafast dynamics. It is shown that both the frequency modulation of libration motion and the energy relaxation from the libration to the low frequency motion significantly slow down in the absence of the hindered translation motion. The present result reveals that the anharmonic coupling between the hindered translation and libration motions is essential for the ultrafast relaxation dynamics in liquid water.

1.
W.
Kauzmann
and
D.
Eisenberg
,
The Structures and Properties of Water
(
Oxford
,
London
,
1969
).
2.
F.
Franks
,
Water, a Comprehensive Treatiese
(
Plenum
,
New York
,
1972–1982
).
3.
I.
Ohmine
and
H.
Tanaka
,
Chem. Rev. (Washington, D.C.)
93
,
2545
(
1993
).
4.
I.
Ohmine
and
S.
Saito
,
Acc. Chem. Res.
32
,
741
(
1999
).
5.
J. E.
Bertie
and
Z.
Lau
,
Appl. Spectrosc.
50
,
1047
(
1996
).
6.
G. E.
Walrafen
,
J. Phys. Chem.
94
,
2237
(
1990
).
7.
K.
Mizoguchi
,
Y.
Hori
, and
Y.
Tominaga
,
J. Chem. Phys.
97
,
1961
(
1992
).
8.
P. R.
Staver
and
W. T.
Lotshaw
,
J. Phys. Chem.
98
,
6308
(
1994
).
9.
E. W.
Castner
, Jr.
,
Y. J.
Chang
,
Y. C.
Chu
, and
G. E.
Walrafen
,
J. Chem. Phys.
102
,
653
(
1995
).
10.
C.
Rønne
,
P. O.
Åstrand
, and
S. R.
Keiding
,
Phys. Rev. Lett.
82
,
2888
(
1999
).
11.
A. J.
Lock
and
H. J.
Bakker
,
J. Chem. Phys.
117
,
1708
(
2002
).
12.
J.
Linder
,
P.
Vöhringer
,
M. S.
Pshenichnikov
,
D.
Cringus
,
D. A.
Wiersma
, and
M.
Mostovoy
,
Chem. Phys. Lett.
421
,
329
(
2006
).
13.
S.
Ashihara
,
N.
Huse
,
A.
Espagne
,
E. T. J.
Nibbering
, and
T.
Elsaesser
,
J. Phys. Chem. A
111
,
743
(
2007
).
14.
L.
Chieffo
,
J.
Shattuck
,
J. J.
Amsden
,
S.
Erramilli
, and
L. D.
Ziegler
,
Chem. Phys.
341
,
71
(
2007
).
15.
M. D.
Fayer
,
Ultrafast Infrared and Raman Spectroscopy
(
Dekker
,
New York
,
2001
).
16.
M.
Cho
,
Bull. Korean Chem. Soc.
27
,
1940
(
2006
).
17.
R. M.
Hochstrasser
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
14190
(
2007
).
18.
J. B.
Asbury
,
T.
Steinel
,
C.
Stromberg
,
S. A.
Corcelli
,
C. P.
Lawrence
,
J. L.
Skinner
, and
M. D.
Fayer
,
J. Phys. Chem. A
108
,
1107
(
2004
).
19.
J. J.
Loparo
,
S. T.
Roberts
, and
A.
Tokmakoff
,
J. Chem. Phys.
125
,
194521
(
2006
).
20.
M. L.
Cowan
,
B. D.
Bruner
,
N.
Huse
,
J. R.
Dwyer
,
B.
Chugh
,
E. T. J.
Nibbering
,
T.
Elsaesser
, and
R. J. D.
Miller
,
Nature (London)
434
,
199
(
2005
).
21.
D.
Kraemer
,
M. L.
Cowan
,
A.
Paarmann
,
N.
Huse
,
E. T. J.
Nibbering
,
T.
Elsaesser
, and
R. J. D.
Miller
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
437
(
2008
).
22.
C. P.
Laurence
and
J. L.
Skinner
,
J. Chem. Phys.
118
,
264
(
2003
).
23.
K. B.
Møller
,
R.
Rey
, and
J. T.
Hynes
,
J. Phys. Chem. A
108
,
1275
(
2004
).
24.
T. I. C.
Jansen
,
T.
Hayashi
,
W.
Zhuang
, and
S.
Mukamel
,
J. Chem. Phys.
123
,
114504
(
2005
).
25.
J. R.
Schmidt
,
S. A.
Corcelli
, and
J. L.
Skinner
,
J. Chem. Phys.
123
,
044513
(
2005
).
26.
M.
Cho
,
G. R.
Fleming
,
S.
Saito
,
I.
Ohmine
, and
R. M.
Stratt
,
J. Chem. Phys.
100
,
6672
(
1994
).
27.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford
,
New York
,
1995
).
28.
S.
Mukamel
and
J. B.
Maddox
,
J. Chem. Phys.
121
,
36
(
2004
).
29.
T.
Hasegawa
and
Y.
Tanimura
,
J. Chem. Phys.
125
,
074512
(
2006
).
30.
T.
Hasegawa
and
Y.
Tanimura
,
J. Chem. Phys.
128
,
064511
(
2008
).
31.
T. I. C.
Jansen
,
K.
Duppen
, and
J. G.
Snijder
,
Phys. Rev. B
67
,
134206
(
2003
).
32.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
33.
J. R.
Schmidt
,
S. T.
Roberts
,
J. J.
Loparo
,
A.
Tokmakoff
,
M. D.
Fayer
, and
J. L.
Skinner
,
Chem. Phys.
341
,
143
(
2007
).
34.
T.
Yagasaki
,
J.
Ono
, and
S.
Saito
,
J. Chem. Phys.
(unpublished).
35.
L.
Hernandez de la Pena
and
P. G.
Kusalik
,
J. Chem. Phys.
121
,
5992
(
2004
).
36.
T. F.
Miller
 III
and
D. E.
Manolopoulos
,
J. Chem. Phys.
123
,
154504
(
2005
).
37.
J. D.
Hybl
,
A. A.
Ferro
, and
D. M.
Jonas
,
J. Chem. Phys.
115
,
6606
(
2001
).
38.
M.
Khalil
,
N.
Demirdoven
, and
A.
Tokmakoff
,
Phys. Rev. Lett.
90
,
047401
(
2003
).
39.
S. T.
Roberts
,
J. J.
Loparo
, and
A.
Tokmakoff
,
J. Chem. Phys.
125
,
084502
(
2006
).
40.
M.
Kozinski
,
S.
Garrett-Roc
, and
P.
Hamm
,
Chem. Phys.
341
,
5
(
2007
).
41.
S.
Saito
and
I.
Ohmine
,
J. Chem. Phys.
125
,
084506
(
2006
).
42.
Y. S.
Kim
and
R. M.
Hochstrasser
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
11185
(
2005
).
43.
J.
Zheng
,
K.
Kwak
,
J.
Asbury
,
X.
Chen
,
I. R.
Piletic
, and
M. D.
Fayer
,
Science
309
,
1338
(
2005
).
44.
C.
Kolano
,
J.
Helbing
,
M.
Kozinski
,
W.
Sander
, and
P.
Hamm
,
Nature (London)
444
,
469
(
2006
).
45.
T.
Brixner
,
J.
Stenger
,
H. M.
Vaswani
,
M.
Cho
,
R. E.
Blankenship
, and
G. R.
Fleming
,
Nature (London)
434
,
625
(
2005
).
46.
M.
Maroncelli
,
J. Chem. Phys.
94
,
2084
(
1991
).
47.
M. F.
Emde
,
A.
Baltuska
,
A.
Kummrow
,
M. S.
Pshenichnikov
, and
D. A.
Wiersma
,
Phys. Rev. Lett.
80
,
4645
(
1998
).
48.
G.
Ventalon
,
J. M.
Fraser
,
J.-P.
Likforman
,
D. M.
Villeneuve
,
P. B.
Corkum
, and
M.
Joffre
,
J. Opt. Soc. Am. B
23
,
332
(
2006
).
You do not currently have access to this content.