The flows of dilute polymer solutions in micro- and nanoscale channels are of both fundamental and practical importance in variety of applications in which the channel gap is of the same order as the size of the suspended particles or macromolecules. In such systems depletion layers are observed near solid-fluid interfaces, even in equilibrium, and the imposition of flow results in further cross-stream migration of the particles. In this work we employ dissipative particle dynamics to study depletion and migration in dilute polymer solutions in channels several times larger than the radius of gyration (Rg) of bead-spring chains. We compare depletion layers for different chain models and levels of chain representation, solvent quality, and relative wall-solvent-polymer interactions. By suitable scaling the simulated depletion layers compare well with the asymptotic lattice theory solution of depletion near a repulsive wall. In Poiseuille flow, polymer migration across the streamlines increases with the Peclet and the Reynolds number until the center-of-mass distribution develops two symmetric off-center peaks which identify the preferred chain positions across the channel. These appear to be governed by the balance of wall-chain repulsive interactions and an off-center driving force of the type known as the Segre–Silberberg effect.

1.
P. G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
Ithaca
,
1979
).
2.
D.
Aussere
,
H.
Hervet
, and
F.
Rondelez
,
Macromolecules
19
,
85
(
1986
).
3.
L.
Fang
,
H.
Hu
, and
R. G.
Larson
,
J. Rheol.
49
,
127
(
2005
).
4.
Y. L.
Chen
,
M. D.
Graham
,
J. J.
de Pablo
,
K.
Jo
, and
D. C.
Schwartz
,
Macromolecules
38
,
6680
(
2005
).
5.
A.
Milchev
and
K.
Binder
,
Eur. Phys. J. B
3
,
477
(
1998
).
6.
P. G.
Bolhuis
,
A. A.
Louis
,
J. P.
Hansen
, and
E. J.
Meijer
,
J. Chem. Phys.
114
,
4296
(
2001
).
7.
A.
Berkenbos
and
C. P.
Lowe
,
J. Chem. Phys.
127
,
164902
(
2007
).
8.
O. B.
Usta
,
J. E.
Butler
, and
A. J. C.
Ladd
,
Phys. Fluids
18
,
031703
(
2006
).
9.
Y.-L.
Chen
,
H.
Ma
,
M. D.
Graham
, and
J. J.
de Pablo
,
Macromolecules
40
,
85
(
2007
).
10.
R.
Khare
,
M. D.
Graham
, and
J. J.
de Pablo
,
Phys. Rev. Lett.
96
,
224505
(
2006
).
11.
J. A.
Millan
,
W.
Jiang
,
M.
Laradji
, and
Y.
Wang
,
J. Chem. Phys.
126
,
124905
(
2007
).
12.
E.
Eisenriegler
and
R.
Maassen
,
J. Chem. Phys.
116
,
449
(
2002
).
13.
O. B.
Usta
,
J. E.
Butler
, and
A. J. C.
Ladd
,
Phys. Rev. Lett.
98
,
098301
(
2007
).
14.
H.
Ma
and
M. D.
Graham
,
Phys. Fluids
17
,
083103
(
2005
).
15.
P. J.
Hoogerbrugge
and
J. M. V. A.
Koelman
,
Europhys. Lett.
19
,
155
(
1992
).
16.
R. D.
Groot
and
P. B.
Warren
,
J. Chem. Phys.
107
,
4423
(
1997
).
17.
N. A.
Spenley
,
Europhys. Lett.
49
,
534
(
2000
).
18.
R. D.
Groot
and
K. L.
Rabone
,
Biophys. J.
81
,
725
(
2001
).
19.
A.
Maiti
and
S.
McGrother
,
J. Chem. Phys.
120
,
1594
(
2004
).
20.
G.
Segre
and
A.
Silberberg
,
Nature (London)
189
,
209
(
1961
).
21.
G.
Segre
and
A.
Silberberg
,
J. Fluid Mech.
14
,
115
(
1962
).
22.
P.
Espanol
and
P.
Warren
,
Europhys. Lett.
30
,
191
(
1995
).
23.
X.
Fan
,
N.
Phan–Thien
,
S.
Chen
,
X.
Wu
, and
T. Y.
Ng
,
Phys. Fluids
18
,
063102
(
2006
).
24.
V.
Symeonidis
,
B.
Caswell
, and
G. E.
Karniadakis
,
J. Chem. Phys.
125
,
184902
(
2006
).
25.
D. A.
Fedosov
,
I. V.
Pivkin
, and
G. E.
Karniadakis
,
J. Comput. Phys.
227
,
2540
(
2008
).
26.
Y.
Kong
,
C. W.
Manke
,
W. G.
Madden
, and
A. G.
Schlijper
,
J. Chem. Phys.
107
,
592
(
1997
).
27.
J. A.
Backer
,
C. P.
Lowe
,
H. C. J.
Hoefsloot
, and
P. D.
Iedema
,
J. Chem. Phys.
122
,
154503
(
2005
).
28.
F.
Schlesener
,
A.
Hanke
,
R.
Klimpel
, and
S.
Dietrich
,
Phys. Rev. E
63
,
041803
(
2001
).
29.
D.
Qi
,
L.
Luo
,
R.
Aravamuthan
, and
W.
Strieder
,
J. Stat. Phys.
107
,
101
(
2002
).
30.
P.
Vasseur
and
R. G.
Cox
,
J. Fluid Mech.
78
,
385
(
1976
).
31.
J.
Feng
,
H. H.
Hu
, and
D. D.
Joseph
,
J. Fluid Mech.
277
,
271
(
1994
).
32.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1965
).
33.
H.
Brenner
,
J. Fluid Mech.
11
,
604
(
1961
).
34.
D. H.
Douglas–Hamilton
,
N. G.
Smith
,
C. E.
Kuster
,
J. P. W.
Vermeiden
, and
G. C.
Althouse
,
J. Androl
26
,
107
(
2005
).
You do not currently have access to this content.