An approach to treat static correlation within a density-functional framework is presented. To that end, a multiconfiguration optimized effective potential (MCOEP) method is derived. In contrast to standard multiconfiguration self-consistent field (MCSCF) methods and previous combinations of MCSCF procedures with density-functional theory, the MCOEP method yields well-defined physically meaningful orbital and eigenvalue spectra. In addition to the electronic ground state also excited electronic states can be described. The MCOEP method is implemented invoking the localized Hartree–Fock approximation, leading to a multiconfiguration localized Hartree–Fock approach. Applications of the new method to the dissociation of the hydrogen molecule and the isomerization of ethene and cyclobutadiene show that it is capable of describing situations that are characterized by strong static correlation

1.
R. M.
Dreizler
and
E. K. U.
Gross
,
Density Functional Theory
(
Springer
,
Heidelberg
,
1990
).
2.
W.
Koch
and
M. C.
Holthausen
,
A Chemist’s Guide to Density Functional Theory
(
Wiley-VCH
,
New York
,
2000
).
3.
R. G.
Parr
and
W.
Yang
,
Density Functional Theory of Atoms and Molecules
(
Oxford University Press
,
Oxford
,
1989
).
4.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
5.
M.
Weimer
,
F.
Della Sala
, and
A.
Görling
,
Chem. Phys. Lett.
372
,
538
(
2003
).
6.
J. M.
Galbraith
and
H. F.
Schäfer
,
J. Chem. Phys.
105
,
862
(
1996
).
7.
N.
Rösch
and
S. B.
Trickey
,
J. Chem. Phys.
106
,
8940
(
1997
).
8.
M. E.
Casida
,
C.
Jamorski
,
K. C.
Casida
, and
D. R.
Salahub
,
J. Chem. Phys.
108
,
4439
(
1998
).
9.
F.
Della Sala
and
A.
Görling
,
Int. J. Quantum Chem.
91
,
131
(
2003
).
10.
W.
Hieringer
,
F.
Della Sala
, and
A.
Görling
,
Chem. Phys. Lett.
383
,
115
(
2004
).
11.
A. M.
Teale
and
D. J.
Tozer
,
Chem. Phys. Lett.
383
,
109
(
2004
).
12.
G.
Magayarfalvi
and
P.
Pulay
,
J. Chem. Phys.
119
,
1350
(
2003
).
13.
M.
Bühl
,
M.
Kaupp
,
O. L.
Malkina
, and
V. G.
Malkin
,
J. Comput. Chem.
20
,
91
(
1999
).
14.
A.
Görling
,
J. Chem. Phys.
123
,
062203
(
2005
), and references therein.
15.
R. T.
Sharp
and
G. K.
Horton
,
Phys. Rev.
90
,
317
(
1953
).
16.
J. D.
Talman
and
W. F.
Shadwick
,
Phys. Rev. A
14
,
36
(
1976
).
17.
A.
Görling
,
Phys. Rev. B
53
,
7024
(
1996
).
18.
M.
Städele
,
J. A.
Majewski
,
P.
Vogl
, and
A.
Görling
,
Phys. Rev. Lett.
79
,
2089
(
1997
).
19.
M.
Städele
,
M.
Moukara
,
J. A.
Majewski
,
P.
Vogl
, and
A.
Görling
,
Phys. Rev. B
59
,
10031
(
1999
).
20.
A.
Görling
,
Phys. Rev. Lett.
83
,
5439
(
1999
).
21.
S.
Ivanov
,
S.
Hirata
, and
R. J.
Bartlett
,
Phys. Rev. Lett.
83
,
5455
(
1999
).
22.
M.
Levy
and
A.
Görling
,
Philos. Mag. B
69
,
763
(
1994
).
23.
S.
Hirata
,
S.
Ivanov
,
I.
Grabowski
,
R. J.
Bartlett
,
K.
Burke
, and
J. D.
Talman
,
J. Chem. Phys.
115
,
1635
(
2001
).
24.
S.
Hamel
,
M. E.
Casida
, and
D. R.
Salahub
,
J. Chem. Phys.
116
,
8276
(
2002
).
25.
V. K.
Staroverov
,
G. E.
Scuseria
, and
E. R.
Davidson
,
J. Chem. Phys.
124
,
141103
(
2006
).
26.
A.
Görling
,
A.
Heßelmann
,
M.
Jones
, and
M.
Levy
,
J. Chem. Phys.
(in press).
27.
A.
Heßelmann
and
A.
Görling
,
Chem. Phys. Lett.
(in press).
28.
J. B.
Krieger
,
Y.
Li
, and
G. J.
Iafrate
,
Phys. Rev. A
46
,
5453
(
1992
).
29.
F.
Della Sala
and
A.
Görling
,
J. Chem. Phys.
115
,
5718
(
2001
).
30.
O. V.
Gritsenko
and
E. J.
Baerends
,
Phys. Rev. A
64
,
042506
(
2001
).
31.
Q.
Wu
and
W.
Yang
,
J. Theor. Comput. Chem.
2
,
627
(
2003
).
32.
V. K.
Staroverov
,
G. E.
Scuseria
, and
E. R.
Davidson
,
J. Chem. Phys.
125
,
081104
(
2006
).
33.
T.
Heaton-Burgess
,
F. A.
Bulat
, and
W.
Yang
,
Phys. Rev. Lett.
98
,
256401
(
2007
).
34.
A.
Heßelmann
,
A.
Götz
,
F.
Della Sala
, and
A.
Görling
,
J. Chem. Phys.
127
,
054102
(
2007
).
35.
F.
Della Sala
and
A.
Görling
,
J. Chem. Phys.
118
,
10439
(
2003
).
36.
F.
Moscardo
and
E.
San-Fabian
,
Phys. Rev. A
44
,
1549
(
1991
).
37.
A.
Savin
, in
Recent Developments and Applications of Modern Density Functional Theory
, edited by
J. M.
Seminario
(
Elsevier
,
Amsterdam
,
1996
), p.
327
.
38.
B.
Mielich
,
H.
Stoll
, and
A.
Savin
,
Mol. Phys.
91
,
527
(
1997
).
39.
T.
Leininger
,
H.
Stoll
,
H.-J.
Werner
, and
A.
Savin
,
Chem. Phys. Lett.
151
,
9275
(
1997
).
40.
J. J. W.
McDouall
and
N. O.
Malcom
,
Chem. Phys. Lett.
282
,
121
(
1998
).
41.
J.
Gräfenstein
and
D.
Cremer
,
Chem. Phys. Lett.
316
,
569
(
2000
).
42.
R.
Takeda
,
S.
Yamanaka
, and
K.
Yamaguchi
,
Chem. Phys. Lett.
366
,
321
(
2002
).
43.
P.
Pollet
,
A.
Savin
,
T.
Leininger
, and
H.
Stoll
,
J. Chem. Phys.
116
,
1250
(
2002
).
44.
D.
Cremer
,
M.
Filatov
,
V.
Polo
,
E.
Kraka
, and
S.
Shaik
,
Int. J. Mol. Sci.
3
,
604
(
2002
).
45.
J. J. W.
McDouall
,
Mol. Phys.
101
,
361
(
2003
).
46.
47.
V.
Polo
,
J.
Gräfenstein
,
E.
Kraka
, and
D.
Cremer
,
Theor. Chem. Acc.
109
,
22
(
2003
).
48.
S.
Gusarov
,
P. Å
Malmqvist
,
R.
Lindh
, and
B. O.
Roos
,
Theor. Chem. Acc.
112
,
84
(
2004
).
49.
J.
Toulouse
,
A.
Savin
, and
H.-J.
Flad
,
Int. J. Quantum Chem.
100
,
1047
(
2004
).
50.
J.
Gräfenstein
and
D.
Cremer
,
Mol. Phys.
103
,
279
(
2005
).
51.
R.
Baer
and
D.
Neuhauser
,
Phys. Rev. Lett.
94
,
043002
(
2005
).
52.
A. J.
Perez-Jiminez
and
J. M.
Perez-Jorda
,
Phys. Rev. A
75
,
012503
(
2007
).
53.
R. P.
Muller
and
M. P.
Desjarlais
,
J. Chem. Phys.
125
,
054101
(
2006
).
54.
E. J.
Baerends
,
Phys. Rev. Lett.
87
,
133004
(
2001
).
55.
M.
Grüning
,
O. V.
Gritsenko
, and
E. J.
Baerends
,
J. Chem. Phys.
118
,
7183
(
2003
).
56.
E. J.
Baerends
,
J. Chem. Phys.
123
,
062202
(
2005
), and references therein.
57.
M. J. G.
Peach
,
A. M.
Teale
, and
D. J.
Tozer
,
J. Chem. Phys.
126
,
244104
(
2007
).
58.
A.
Görling
,
Phys. Rev. A
59
,
3359
(
1999
).
59.
60.
V.
Vitale
,
F.
Della Sala
, and
A.
Görling
,
J. Chem. Phys.
122
,
244102
(
2005
).
61.
T.
Hupp
,
B.
Engels
,
F.
Della Sala
, and
A.
Görling
,
Z. Phys. Chem.
217
,
133
(
2003
).
62.
T.
Hupp
,
B.
Engels
, and
A.
Görling
,
J. Chem. Phys.
119
,
11591
(
2003
).
63.
F.
Della Sala
and
A.
Görling
,
J. Chem. Phys.
116
,
5374
(
2002
).
64.
F.
Della Sala
and
A.
Görling
,
Phys. Rev. Lett.
89
,
033003
(
2002
).
65.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
,
Chem. Phys. Lett.
162
,
165
(
1989
).
66.
M.
Häser
and
R.
Ahlrichs
,
J. Comput. Chem.
10
,
104
(
1989
).
67.
H.
Horn
,
H.
Weiss
,
M.
Häser
,
M.
Ehrig
, and
R.
Ahlrichs
,
J. Comput. Chem.
12
,
1058
(
1991
).
68.
O.
Treutler
and
R.
Ahlrichs
,
J. Chem. Phys.
102
,
346
(
1995
).
69.
See EPAPS Document No. E-JCPSA6-128-004810 for the geometric series basis set located in the center of mass of H2. This document can be reached through a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).
70.
H.-J.
Werner
,
P. J.
Knowles
,
R.
Lindh
 et al, MOLPRO (see http://www.molpro.net).
71.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
Wiley
,
Chichster
,
2000
).
72.
A.
Szabo
and
N. S.
Ostlund
,
Modern Quantum Chemistry
(
Dover
,
Mineola
,
1989
).
73.
M.
Fuchs
,
Y.-M.
Niquet
,
X.
Gonze
, and
K.
Burke
,
J. Chem. Phys.
122
,
094116
(
2005
).
74.
J.
Toulouse
,
F.
Colonna
, and
A.
Savin
,
Phys. Rev. A
70
,
062505
(
2004
).
75.
J.
Toulouse
, Ph.D. Thesis,
Universite Pierre et Marie Curie
,
2005
.
76.
W.
Kolos
and
L.
Wolniewicz
,
J. Chem. Phys.
43
,
2429
(
1965
).
77.
W.
Kolos
and
L.
Wolniewicz
,
J. Chem. Phys.
45
,
509
(
1966
).
78.
W.
Kolos
and
L.
Wolniewicz
,
J. Chem. Phys.
50
,
3228
(
1969
).
79.
A. I.
Krylov
,
C. D.
Sherril
,
E. F. C.
Byrd
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
10669
(
1998
).
80.
R.
Krawczyk
, Ph.D. Thesis,
Technische Universität München
,
2003
.
81.
Ground state geometry (in D2h symmetry) from x-ray and vibration-rotation spectra: dCC=1.335±0.003Å, dCH=1.090±0.002Å, and HCH=117.4±0.5°.
K.
Kuchitsu
,
J. Chem. Phys.
44
,
906
(
1966
);
L. S.
Bartell
,
E. A.
Roth
,
C. D.
Hollwell
,
K.
Kuchitsu
, and
J. E.
Young
,
J. Chem. Phys.
42
,
2683
(
1965
).
82.

The same basis sets and the MOLPRO program package were used for the CCSD(T) calculations.

83.
R. J.
Buenker
,
V.
Bonačić-Koutecký
, and
L.
Pogliani
,
J. Chem. Phys.
73
,
1836
(
1980
).
84.
V.
Bonačić-Koutecký
,
P.
Bruckmann
,
P.
Hilberty
,
J.
Koutecký
,
C.
Leforestier
, and
L.
Salem
,
Angew. Chem., Int. Ed.
14
,
575
(
1975
).
85.
L.
Salem
and
P.
Bruckmann
,
Nature (London)
258
,
526
(
1975
).
86.

The potentials are plotted along the line defined by the points (0.5,0,0)T and (0.5,0,1)T, instead of the molecular axis (z axis) due to different correction term contributions within (OS)LHF and MCLHF. Only in directions in which the HOMO displays no nodal plane do the exchange (static-correlation) potentials vanish with 1r to zero far from the molecule.

87.
A.
Balková
and
R. J.
Bartlett
,
J. Chem. Phys.
101
,
8972
(
1994
).
88.
M.
Filatov
and
S.
Shaik
,
J. Chem. Phys.
110
,
116
(
1999
).
89.
J. C.
Sancho-García
and
F.
Moscardó
,
J. Chem. Phys.
118
,
1054
(
2003
).
90.
Y.
Shiota
,
M.
Kondo
, and
K.
Yoshizawa
,
J. Chem. Phys.
115
,
9243
(
2001
).
91.
S. V.
Levchenko
and
A. I.
Krylov
,
J. Chem. Phys.
120
,
175
(
2004
).
92.
I.
Grabowski
,
S.
Hirata
,
S.
Ivanov
, and
R. J.
Bartlett
,
J. Chem. Phys.
116
,
4415
(
2002
).
93.
A.
Heßelmann
,
Phys. Chem. Chem. Phys.
8
,
563
(
2006
).
94.
E.
Fabiano
and
F.
Della Sala
,
J. Chem. Phys.
126
,
214102
(
2007
).
95.
G. C.
Lie
and
E.
Clementi
,
J. Chem. Phys.
60
,
1275
(
1973
).
96.
G. C.
Lie
and
E.
Clementi
,
J. Chem. Phys.
60
,
1288
(
1973
).

Supplementary Material

You do not currently have access to this content.