Molecular dynamics (MD) simulation and the potential of mean force (PMF) analysis are used to investigate the structural properties of water molecules near the end of nanotube for the whole process from the initial water filling up to the configuration stabilization inside the carbon nanotubes (CNTs). Numerical simulations showed that when a small-sized nanotube is immersed into the water bath, the size constraint will induce a prevailing orientation for the water molecule to diffuse into the tube and this effect can persist approximately 3.3Å from the end of CNT. As the structure within the CNTs stabilizes, the ambient structural properties can indirectly reflect their corresponding properties inside the nanotube. Our results also showed that there exists a close correlation between the PMF analysis and the results of MD simulations, and the properties at nanometer scale are closely related to the size-constraint effect.

1.
S.
Iijima
,
Nature (London)
354
,
56
(
1991
).
2.
P. M.
Ajayan
and
S.
Iijina
,
Nature (London)
361
,
333
(
1993
).
3.
S. C.
Tsang
,
Y. K.
Chen
,
P. J. F.
Harris
, and
M. L. H.
Green
,
Nature (London)
372
,
159
(
1994
).
4.
C.
Guerret-Plecourt
,
Y. L.
Bouar
,
A.
Loiseau
, and
H.
Pascard
,
Nature (London)
372
,
761
(
1994
).
5.
C. H.
Kiang
,
J. S.
Choi
,
T. T.
Tran
, and
A. D.
Bacher
,
J. Phys. Chem. B
103
,
7449
(
1999
).
6.
G.
Hummer
,
J. C.
Rasaiah
, and
J. P.
Noworyta
,
Nature (London)
414
,
188
(
2001
).
7.
A.
Kalra
,
S.
Garde
, and
G.
Hummer
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
10175
(
2003
).
8.
C.
Dellago
,
M. M.
Naor
, and
G.
Hummer
,
Phys. Rev. Lett.
90
,
105902
(
2003
).
9.
G. M.
Preston
,
T. P.
Carroll
,
W. B.
Guggino
, and
P.
Agre
,
Science
256
,
385
(
1992
).
10.
Y.
Gogotsi
,
J. A.
Libera
,
A.
Guvenc-Yazicioglu
, and
C. M.
Megaridis
,
Appl. Phys. Lett.
79
,
1021
(
2001
).
11.
K.
Koga
,
G. T.
Gao
,
H.
Tanaka
, and
X. C.
Zeng
,
Nature (London)
412
,
802
(
2001
).
12.
M. C.
Gordillo
and
J.
Marti
,
Chem. Phys. Lett.
329
,
341
(
2000
).
13.
O.
Beckstein
,
P. C.
Biggin
, and
M. S. P.
Sansom
,
J. Phys. Chem. B
105
,
12902
(
2001
).
14.
R.
Allen
,
S.
Melchionna
, and
J.-P.
Hansen
,
Phys. Rev. Lett.
89
,
175502
(
2002
).
15.
A.
Berezhkovskii
and
G.
Hummer
,
Phys. Rev. Lett.
89
,
064503
(
2002
).
16.
Y.
Liu
and
Q.
Wang
,
Phys. Rev. B
72
,
085420
(
2005
).
17.
S.
Sriraman
,
I. G.
Kevrekidis
, and
G.
Hummer
,
Phys. Rev. Lett.
95
,
130603
(
2005
).
18.
F.
Zhu
and
K.
Schulten
,
Biophys. J.
85
,
236
(
2003
).
19.
B.
Huanga
,
Y.
Xia
,
M.
Zhao
,
F.
Li
,
X.
Liu
,
Y.
Ji
, and
C.
Song
,
J. Chem. Phys.
122
,
084708
(
2005
).
20.
U.
Zimmerli
,
P. G.
Gonnet
,
J. H.
Walther
, and
P.
Koumoutsakos
,
Nano Lett.
5
,
1017
(
2005
).
21.
K.
Koga
,
H.
Tanaka
, and
X. C.
Zeng
,
Nature (London)
408
,
564
(
2000
).
22.
A.
Striolo
,
A. A.
Chialvo
,
K. E.
Gubbins
, and
P. T.
Cummings
,
J. Chem. Phys.
122
,
234712
(
2005
).
23.
W. H.
Noon
,
K. D.
Ausman
,
R. E.
Smalley
, and
J.
Ma
,
Chem. Phys. Lett.
355
,
445
(
2002
).
24.
R. J.
Mashl
,
S.
Joseph
,
N. R.
Aluru
, and
E.
Jakobsson
,
Nano Lett.
3
,
589
(
2003
).
25.
L.
Feng
,
Z.
Zhang
,
Z.
Mai
,
Y.
Ma
,
B.
Liu
,
L.
Jiang
, and
D.
Zhu
,
Angew. Chem., Int. Ed.
43
,
2012
(
2004
).
26.
X.
Feng
,
J.
Zhai
, and
L.
Jiang
,
Angew. Chem., Int. Ed.
44
,
5115
(
2005
).
27.
L.
Jiang
,
Y.
Zhao
, and
J.
Zhai
,
Angew. Chem., Int. Ed.
43
,
4338
(
2004
).
28.
S.
Wang
,
X.
Feng
,
J.
Yao
, and
L.
Jiang
,
Angew. Chem., Int. Ed.
45
,
1264
(
2006
).
29.
J. H.
Walther
,
R.
Jaffe
,
T.
Halicioglu
, and
P.
Koumoutsakos
,
J. Phys. Chem. B
105
,
9980
(
2001
).
30.
T.
Werder
,
J. H.
Walther
,
R. L.
Jaffe
,
T.
Halicioglu
,
F.
Noca
, and
P.
Koumoutsakos
,
Nano Lett.
1
,
697
(
2001
).
31.
S.
Vaitheeswaran
,
H.
Yin
,
J. C.
Rasaiah
, and
G.
Hummer
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
17002
(
2004
).
32.
A.
Kutana
and
K. P.
Giapis
,
Nano Lett.
6
,
656
(
2006
).
33.
I.
Kosztin
,
B.
Barz
, and
L.
Janosi
,
J. Chem. Phys.
124
,
064106
(
2006
).
34.
A. R.
Leach
,
Molecular Modeling: Principles and Applications
, 2nd ed. (
Prentice-Hall
,
Upper Saddle River
,
2001
).
35.
A. I.
Kolesnikov
,
J.-M.
Zanotti
,
C.-K.
Loong
,
P.
Thiyagarajan
,
A. P.
Moravsky
,
R. O.
Loutfy
, and
C. J.
Burnham
,
Phys. Rev. Lett.
93
,
035503
(
2004
).
36.
A. V.
Raghunathan
and
N. R.
Aluru
,
Phys. Rev. Lett.
97
,
024501
(
2006
).
37.
C. Y.
Won
,
S.
Joseph
, and
N. R.
Aluru
,
J. Chem. Phys.
125
,
114701
(
2006
).
38.
E.
Lindahl
,
B.
Hess
, and
D.
van der Spoel
,
J. Mol. Model.
7
,
306
(
2001
).
39.
D.
van der Spoel
,
E.
Lindahl
,
B.
Hess
,
A. R.
van Buuren
,
E.
Apol
,
P. J.
Meulenhoff
,
D. P.
Tieleman
,
A. L. T. M.
Sijbers
,
K. A.
Feenstra
,
R.
van Drunen
, and
H. J. C.
Berendsen
, GROMACS User Manual, version 3.3 (
2005
).
40.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
41.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
,
J. Chem. Phys.
103
,
8577
(
1995
).
42.
C. T.
White
,
D. H.
Robertson
, and
J. W.
Mintmire
,
Phys. Rev. B
47
,
5485
(
1993
).
43.
C.
Lobban
,
J. L.
Finney
, and
W. F.
Kuhs
,
J. Chem. Phys.
112
,
7169
(
2000
).
44.
C. G.
Salzmann
,
P. G.
Radaelli
,
A.
Hallbrucker
,
E.
Mayer
, and
J. L.
Finney
,
Science
311
,
1758
(
2006
).
45.
I.
Brovchenko
,
A.
Geiger
, and
A.
Oleinikova
,
J. Phys.: Condens. Matter
16
,
S5345
(
2004
).
46.
P.
Gallo
,
M.
Rovere
, and
E.
Spohr
,
J. Chem. Phys.
113
,
11324
(
2000
).
47.
M. C.
Gordillo
and
J.
Marti
,
Phys. Rev. B
75
,
085406
(
2007
).
You do not currently have access to this content.