A comparison of chain-of-states based methods for finding minimum energy pathways (MEPs) is presented. In each method, a set of images along an initial pathway between two local minima is relaxed to find a MEP. We compare the nudged elastic band (NEB), doubly nudged elastic band, string, and simplified string methods, each with a set of commonly used optimizers. Our results show that the NEB and string methods are essentially equivalent and the most efficient methods for finding MEPs when coupled with a suitable optimizer. The most efficient optimizer was found to be a form of the limited-memory Broyden-Fletcher-Goldfarb-Shanno method in which the approximate inverse Hessian is constructed globally for all images along the path. The use of a climbing-image allows for finding the saddle point while representing the MEP with as few images as possible. If a highly accurate MEP is desired, it is found to be more efficient to descend from the saddle to the minima than to use a chain-of-states method with many images. Our results are based on a pairwise Morse potential to model rearrangements of a heptamer island on Pt(111), and plane-wave based density functional theory to model a rollover diffusion mechanism of a Pd tetramer on MgO(100) and dissociative adsorption and diffusion of oxygen on Au(111).

1.
H.
Jónsson
,
G.
Mills
, and
K. W.
Jacobsen
,
Classical and Quantum Dynamics in Condensed Phase Simulations
, edited by
B. J.
Berne
,
G.
Ciccotti
, and
D. F.
Coker
(
World Scientific
,
Singapore
,
1998
), pp.
385
404
.
2.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
113
,
9978
(
2000
).
3.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
4.
S. A.
Trygubenko
and
D. J.
Wales
,
J. Chem. Phys.
120
,
2082
(
2004
).
5.
W.
E
,
W.
Ren
, and
E.
Vanden–Eijnden
,
Phys. Rev. B
66
,
052301
(
2002
).
6.
W.
E
,
W.
Ren
, and
E.
Vanden–Eijnden
,
J. Chem. Phys.
126
,
164103
(
2007
).
7.
L. R.
Pratt
,
J. Chem. Phys.
85
,
5045
(
1986
).
8.
R.
Elber
and
M.
Karplus
,
Chem. Phys. Lett.
139
,
375
(
1987
).
9.
L.
Xie
,
H.
Liu
, and
W.
Yang
,
J. Chem. Phys.
120
,
8039
(
2004
).
10.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
111
,
7010
(
1999
).
11.
L. J.
Munro
and
D. J.
Wales
,
Phys. Rev. B
59
,
3969
(
1999
).
12.
E.
Bitzek
,
P.
Koskinen
,
F.
Fähler
,
M.
Moseler
, and
P.
Gumbsch
,
Phys. Rev. Lett.
97
,
170201
(
2006
).
13.
M. R.
Hestenes
and
E.
Steifel
,
J. Res. Natl. Bur. Stand.
49
,
409
(
1952
).
14.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in C: The Art of Scientific Computation
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
1992
).
15.
J.
Nocedal
,
Math. Comput.
35
,
773
(
1980
).
16.
H. C.
Andersen
,
J. Chem. Phys.
72
,
2384
(
1980
).
17.
D. J.
Wales
,
OPTIM: A Program for Optimizing Geometries and Calculating Reaction Pathways
(
University of Cambridge Press
,
Cambridge
,
2003
) (http://www-wales.ch.cam.ac.uk/software.html).
18.
J. M.
Carr
,
S. A.
Trygubenko
, and
D. J.
Wales
,
J. Chem. Phys.
122
,
234903
(
2005
).
19.
G.
Henkelman
,
G.
Jóhannesson
, and
H.
Jónsson
,
Progress on Theoretical Chemistry and Physics
, edited by
S.
Schwartz
(
Kluwer Academic
,
New York
,
2000
), pp.
269
299
.
20.
D. W.
Bassett
and
P. R.
Webber
,
Surf. Sci.
70
,
520
(
1978
).
21.
P.
Maragakis
,
S. A.
Andreev
,
Y.
Brumer
,
D. R.
Reichman
, and
E.
Kaxiras
,
J. Chem. Phys.
117
,
4651
(
2002
).
22.
J.-W.
Chu
,
B. L.
Trout
, and
B. R.
Brooks
,
J. Chem. Phys.
119
,
12708
(
2003
).
23.
E. F.
Koslover
and
D. J.
Wales
,
J. Chem. Phys.
127
,
134102
(
2007
).
24.
R.
Malek
and
N.
Mousseau
,
Phys. Rev. E
62
,
7723
(
2000
).
25.
L.
Xu
,
G.
Henkelman
,
C. T.
Campbell
, and
H.
Jónsson
,
Phys. Rev. Lett.
95
,
146103
(
2005
).
26.
J. P.
Perdew
,
Electronic Structure of Solids
, edited by
P.
Ziesche
and
H.
Eschrig
(
Akademie Verlag
,
Berlin
,
1991
), p.
11
.
27.
D.
Vanderbilt
,
Phys. Rev. B
41
,
7892
(
1990
).
28.
G.
Kresse
and
J.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
29.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
30.
B.
Peters
,
A.
Heyden
,
A. T.
Bell
, and
A.
Chakraborty
,
J. Chem. Phys.
120
,
7877
(
2004
).
31.
G. A.
Cisneros
,
H.
Liu
,
Z.
Lu
, and
W.
Yang
,
J. Chem. Phys.
122
,
114502
(
2005
).
32.
S. K.
Burger
and
W.
Yang
,
J. Chem. Phys.
124
,
054109
(
2006
).
You do not currently have access to this content.