The photodissociation of propargyl radical, C3H3, and its perdeuterated isotopolog was investigated using photofragment translational spectroscopy. Propargyl radicals were produced by 193nm photolysis of allene entrained in a molecular beam expansion and then photodissociated at 248nm. Photofragment time-of-flight spectra were measured at a series of laboratory angles using electron impact ionization coupled to a mass spectrometer. Data for ion masses corresponding to C3H2+, C3H+, C3+, and the analogous deuterated species show that both H and H2 loss occur. The translational energy distributions for these processes have average values ET=5.7 and 15.3kcalmol, respectively, and are consistent with dissociation on the ground state following internal conversion, with no exit barrier for H loss but a tight transition state for H2 loss. Our translational energy distribution for H atom loss is similar to that in a previous work on propargyl in which the H atom, rather than the heavy fragment, was detected. The branching ratio for H loss/H2 loss was determined to be 97.62.4±1.2, in good agreement with previous calculations.

1.
R. I.
Kaiser
,
Y. T.
Lee
, and
A. G.
Suits
,
J. Chem. Phys.
105
,
8705
(
1996
).
2.
R. I.
Kaiser
and
A. M.
Mebel
,
Int. Rev. Phys. Chem.
21
,
307
(
2002
).
3.
C. A.
Taatjes
,
S. J.
Klippenstein
,
N.
Hansen
,
J. A.
Miller
,
T. A.
Cool
,
J.
Wang
,
M. E.
Law
, and
P. R.
Westomoreland
,
Phys. Chem. Chem. Phys.
7
,
806
(
2005
).
4.
I.
Cherchneff
and
J. R.
Barker
,
Astrophys. J.
394
,
703
(
1992
).
5.
I.
Cherchneff
,
J. R.
Barker
, and
A. G. G. M.
Tielens
,
Astrophys. J.
401
,
269
(
1992
).
6.
C. L.
Morter
,
S. K.
Farhat
,
J. D.
Adamson
,
G. P.
Glass
, and
R. F.
Curl
,
J. Phys. Chem.
98
,
7029
(
1994
).
7.
K.
Tanaka
,
Y.
Sumiyoshi
,
Y.
Ohshima
,
Y.
Endo
, and
K.
Kawaguchi
,
J. Chem. Phys.
107
,
2728
(
1997
).
8.
K.
Tanaka
,
T.
Harada
,
K.
Sakaguchi
,
K.
Harada
, and
T.
Tanaka
,
J. Chem. Phys.
103
,
6450
(
1995
).
9.
L.
Yuan
,
J.
DeSain
, and
R. F.
Curl
,
J. Mol. Spectrosc.
187
,
102
(
1998
).
10.
D. A.
Ramsay
and
P.
Thistlethwaite
,
Can. J. Phys.
44
,
1381
(
1966
).
11.
A.
Fahr
,
P.
Hassanzadeh
,
B.
Laszlo
, and
R. E.
Huie
,
Chem. Phys.
215
,
59
(
1997
).
12.
A.
Fahr
and
A. H.
Laufer
,
J. Phys. Chem. A
109
,
2534
(
2004
).
13.
J. M.
Oakes
and
G. B.
Ellison
,
J. Am. Chem. Soc.
105
,
2969
(
1983
).
14.
M. S.
Robinson
,
M. L.
Polak
,
V. M.
Bierbaum
,
C. H.
Depuy
, and
W. C.
Lineberger
,
J. Am. Chem. Soc.
117
,
6766
(
1995
).
15.
F. P.
Lossing
,
Can. J. Chem.
50
,
3973
(
1972
).
16.
D. W.
Minsek
and
P.
Chen
,
J. Phys. Chem.
94
,
8399
(
1990
).
17.
T.
Gilbert
,
R.
Pfab
,
I.
Fischer
, and
P.
Chen
,
J. Chem. Phys.
112
,
2575
(
2000
).
18.
W. M.
Jackson
,
D. S.
Anex
,
R. E.
Continetti
,
B. A.
Balko
, and
Y. T.
Lee
,
J. Chem. Phys.
95
,
7327
(
1991
).
19.
H.-J.
Deyerl
,
I.
Fischer
, and
P.
Chen
,
J. Chem. Phys.
111
,
3441
(
1999
).
20.
L. R.
McCunn
,
B. L.
FitzPatrick
,
M. J.
Krisch
,
L. J.
Butler
,
L.
Chi–Wei
, and
J. J.-M.
Lin
,
J. Chem. Phys.
125
,
133306
(
2006
).
21.
H.
Honjou
,
M.
Yoshimine
, and
J.
Pacansky
,
J. Phys. Chem.
91
,
4455
(
1987
).
22.
P.
Botschwina
,
R.
Oswald
,
J.
Flugge
, and
M.
Horn
,
Z. Phys. Chem.
188
,
29
(
1995
).
23.
L.
Vereecken
,
K.
Pierloot
, and
J.
Peeters
,
J. Chem. Phys.
108
,
1068
(
1998
).
24.
X.
Krokidis
,
N. W.
Moriarty
,
W. A.
Lester
, and
M.
Frenklach
,
Chem. Phys. Lett.
314
,
534
(
1999
).
25.
T. L.
Nguyen
,
A. M.
Mebel
, and
R. I.
Kaiser
,
J. Phys. Chem. A
105
,
3284
(
2001
).
26.
T. L.
Nguyen
,
A. M.
Mebel
,
S. H.
Lin
, and
R. I.
Kaiser
,
J. Phys. Chem. A
105
,
11549
(
2001
).
27.
W.
Eisfeld
,
Phys. Chem. Chem. Phys.
7
,
3924
(
2005
).
28.
W.
Eisfeld
,
J. Phys. Chem. A
110
,
3903
(
2006
).
29.
S. A.
Wheeler
,
K. A.
Robertson
,
W. D.
Allen
,
H. F.
Schaefer
 III
,
Y. J.
Bomble
, and
J. F.
Stanton
,
J. Phys. Chem. A
111
,
3819
(
2007
).
30.

It should be noted that the most recent high-level calculations on propargyl radical yield a heat of formation of 85.76kcalmol (Ref. 29), a value of 0.26kcalmol greater than the value suggested by Nguyen et al. However, no revised heats of formation for the propargyl fragments were given.

31.
C.
Ochsenfeld
,
R. I.
Kaiser
,
Y. T.
Lee
,
A. G.
Suits
, and
M.
HeadGordon
,
J. Chem. Phys.
106
,
4141
(
1997
).
32.
S. M.
Sheehan
,
B. F.
Parsons
,
J.
Zhou
,
E.
Garand
,
T. A.
Yen
,
D. T.
Moore
, and
D. M.
Neumark
,
J. Chem. Phys.
128
,
034301
(
2008
).
33.
R. H.
Qadiri
,
E. J.
Feltham
,
E. E.
Cottrill
,
N.
Taniguchi
, and
M. N. R.
Ashfold
,
J. Chem. Phys.
116
,
906
(
2002
).
34.
R. H.
Qadiri
,
E. J.
Feltham
,
N. H.
Nahler
,
R. P.
Garcia
, and
M. N. R.
Ashfold
,
J. Chem. Phys.
119
,
12842
(
2003
).
35.
J. C.
Robinson
,
N. E.
Sveum
,
S. J.
Goncher
, and
D. M.
Neumark
,
Mol. Phys.
103
,
1765
(
2005
).
36.
J. W.
Rabalais
,
J. M.
McDonald
,
V.
Scherr
, and
S. P.
McGlynn
,
Chem. Rev. (Washington, D.C.)
71
,
73
(
1971
).
37.
Y. T.
Lee
,
J. D.
McDonald
,
P. R.
LeBreton
, and
D. R.
Herschbach
,
Rev. Sci. Instrum.
40
,
1402
(
1969
).
38.
J. C.
Robinson
,
S. A.
Harris
,
W.
Sun
,
N. E.
Sveum
, and
D. M.
Neumark
,
J. Am. Chem. Soc.
124
,
10211
(
2001
).
39.
J. B.
Anderson
and
F. B.
Fenn
,
Phys. Fluids
8
,
780
(
1965
).
40.
A.
Kantrowitz
and
J.
Grey
,
Rev. Sci. Instrum.
22
,
328
(
1951
).
41.
F. Z.
Chen
,
D. L.
Judge
, and
C. Y. R.
Wu
,
Chem. Phys.
260
,
215
(
2000
).
42.
S. A.
Harich
, PHOTRAN,
2003
.
43.
W. L.
Fitch
and
A. D.
Sauter
,
Anal. Chem.
55
,
832
(
1983
).
44.
J. C.
Robinson
,
W.
Sun
,
S. A.
Harris
,
F.
Qi
, and
D. M.
Neumark
,
J. Chem. Phys.
115
,
8359
(
2001
).
45.
B. A.
Balko
,
J.
Zhang
, and
Y. T.
Lee
,
J. Chem. Phys.
97
,
935
(
1992
).
You do not currently have access to this content.