Time-dependent density functional theory (TDDFT) is implemented within the Tamm-Dancoff approximation (TDA) using a pseudospectral approach to evaluate two-electron repulsion integrals. The pseudospectral approximation uses a split representation with both spectral basis functions and a physical space grid to achieve a reduction in the scaling behavior of electronic structure methods. We demonstrate here that exceptionally sparse grids may be used in the excitation energy calculation, following earlier work employing the pseudospectral approximation for determining correlation energies in wavefunction-based methods with similar conclusions. The pseudospectral TDA-TDDFT method is shown to be up to ten times faster than a conventional algorithm for hybrid functionals without sacrificing chemical accuracy.

1.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
New York
,
1989
).
2.
M. E.
Casida
, in
Recent Advances in Density Functional Methods
, edited by
D. P.
Chong
(
World Scientific
,
Singapore
,
1995
), Vol.
1
, p.
155
.
3.
M. A. L.
Marques
and
E. K. U.
Gross
,
Annu. Rev. Phys. Chem.
55
,
427
(
2004
).
4.
H.
Appel
,
E. K. U.
Gross
, and
K.
Burke
,
Phys. Rev. Lett.
90
,
043005
(
2003
).
5.
T.
Grabo
,
M.
Petersilka
, and
E. K. U.
Gross
,
J. Mol. Struct.: THEOCHEM
501
,
353
(
2000
).
6.
E.
Runge
and
E. K. U.
Gross
,
Phys. Rev. Lett.
52
,
997
(
1984
).
7.
J. B.
Foresman
,
M.
Head–Gordon
,
J. A.
Pople
, and
M. J.
Frisch
,
J. Phys. Chem.
96
,
135
(
1992
).
8.
A.
Dreuw
and
M.
Head–Gordon
,
Chem. Rev. (Washington, D.C.)
105
,
4009
(
2005
).
9.
M. E.
Casida
,
C.
Jamorski
,
K. C.
Casida
, and
D. R.
Salahub
,
J. Chem. Phys.
108
,
4439
(
1998
).
10.
A.
Dreuw
,
J. L.
Weisman
, and
M.
Head–Gordon
,
J. Chem. Phys.
119
,
2943
(
2003
).
11.
R. J.
Cave
,
F.
Zhang
,
N. T.
Maitra
, and
K.
Burke
,
Chem. Phys. Lett.
389
,
39
(
2004
).
12.
N. T.
Maitra
,
F.
Zhang
,
R. J.
Cave
, and
K.
Burke
,
J. Chem. Phys.
120
,
5932
(
2004
).
13.
B. G.
Levine
,
C.
Ko
,
J.
Quenneville
, and
T. J.
Martinez
,
Mol. Phys.
104
,
1053
(
2006
).
14.
C.-P.
Hsu
,
S.
Hirata
, and
M.
Head–Gordon
,
J. Phys. Chem. A
105
,
451
(
2001
).
15.
B. O.
Roos
,
Acc. Chem. Res.
32
,
137
(
1999
).
16.
R. A.
Friesner
,
Annu. Rev. Phys. Chem.
42
,
341
(
1991
).
17.
T. J.
Martinez
and
E. A.
Carter
,
J. Chem. Phys.
98
,
7081
(
1993
).
18.
T. J.
Martinez
and
E. A.
Carter
,
J. Chem. Phys.
100
,
3631
(
1994
).
19.
T. J.
Martinez
,
A.
Mehta
, and
E. A.
Carter
,
J. Chem. Phys.
97
,
1876
(
1992
).
20.
T. J.
Martinez
and
E. A.
Carter
, in
Modern Electronic Structure Theory
, edited by
D. R.
Yarkony
(
World Scientific
,
Singapore
,
1995
), Vol.
2
, p.
1132
.
21.
T. J.
Martinez
and
E. A.
Carter
,
J. Chem. Phys.
102
,
7564
(
1995
).
22.
R. B.
Murphy
,
Y.
Cao
,
M. D.
Beachy
,
M. N.
Ringnalda
, and
R. A.
Friesner
,
J. Chem. Phys.
112
,
10131
(
2000
).
23.
R. A.
Friesner
,
R. B.
Murphy
,
M. D.
Beachy
,
M. N.
Ringnalda
,
W. T.
Pollard
,
B. D.
Dunietz
, and
Y.
Cao
,
J. Phys. Chem. A
103
,
1913
(
1999
).
24.
R. A.
Friesner
and
B. D.
Dunietz
,
Acc. Chem. Res.
34
,
351
(
2001
).
25.
R. A.
Friesner
,
J. Chem. Phys.
85
,
1462
(
1986
).
26.
S.
Hirata
,
M.
Head–Gordon
, and
R. J.
Bartlett
,
J. Chem. Phys.
111
,
10774
(
1999
).
27.
A.
Szabo
and
N.
Ostlund
,
Modern Quantum Chemistry
(
Dover
,
New York
,
1996
).
28.
S.
Hirata
and
M.
Head–Gordon
,
Chem. Phys. Lett.
314
,
291
(
1999
).
29.
N. H. F.
Beebe
and
J.
Linderberg
,
Int. J. Quantum Chem.
12
,
683
(
1977
).
30.
C.
Van Alsenoy
,
J. Comput. Chem.
9
,
620
(
1988
).
31.
O.
Vahtras
,
J.
Almlof
, and
M. W.
Feyereisen
,
Chem. Phys. Lett.
213
,
514
(
1993
).
32.
M.
Sierka
,
A.
Hogekamp
, and
R.
Ahlrichs
,
J. Chem. Phys.
118
,
9136
(
2003
).
33.
Y.
Jung
,
A.
Sodt
,
P. M. W.
Gill
, and
M.
Head–Gordon
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
6692
(
2005
).
34.
R. A.
Kendall
and
H. A.
Fruchtl
,
Theor. Chim. Acta
97
,
158
(
1997
).
35.
F.
Aquilante
,
T. B.
Pedersen
, and
R.
Lindh
,
J. Chem. Phys.
126
,
194106
(
2007
).
36.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in Fortran 77
(
Cambridge University Press
,
Cambridge
,
1992
).
37.
D.
Rappoport
and
F.
Furche
,
J. Chem. Phys.
122
,
064105
(
2005
).
38.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
39.
Y.
Tawada
,
T.
Tsuneda
,
S.
Yanagisawa
,
T.
Yanai
, and
K.
Hirao
,
J. Chem. Phys.
120
,
8425
(
2004
).
40.
B.
Walker
,
A. M.
Saitta
,
R.
Gebauer
, and
S.
Baroni
,
Phys. Rev. Lett.
96
,
113001
(
2006
).
41.
X.
Andrade
,
S.
Botti
,
M. A. L.
Marques
, and
A.
Rubio
,
J. Chem. Phys.
126
,
184106
(
2007
).
42.
S.
Baroni
,
S.
de Gironcoli
,
A.
Dal Corso
, and
P.
Gianozzi
,
Rev. Mod. Phys.
73
,
515
(
2001
).
43.
44.
M. N.
Ringnalda
,
Y.
Won
, and
R. A.
Friesner
,
J. Chem. Phys.
92
,
1163
(
1990
).
45.
E. R.
Davidson
,
J. Comput. Phys.
17
,
87
(
1975
).
46.
R. A.
Friesner
,
J. Phys. Chem.
92
,
3091
(
1988
).
47.
R. A.
Friesner
,
J. Chem. Phys.
86
,
3522
(
1987
).
48.
A. H.
Stroud
,
Approximate Calculation of Multiple Integrals
(
Prentice-Hall
,
New York
,
1971
).
49.
V. I.
Lebedev
,
Zh. Vychisl. Mat. Mat. Fiz.
15
,
48
(
1975
).
50.
B. H.
Greeley
,
T. V.
Russo
,
D. T.
Mainz
,
J.
Langlois
,
W. A.
Goddard
 III
,
R. E.
Donnelly
, and
M. N.
Ringnalda
,
J. Chem. Phys.
101
,
4028
(
1994
).
51.
M. E.
Mura
and
P. J.
Knowles
,
J. Chem. Phys.
104
,
9848
(
1996
).
52.
J. M.
Perez–Jorda
,
A. D.
Becke
, and
E.
San–Fabian
,
J. Chem. Phys.
100
,
6520
(
1994
).
53.
J.
Baker
,
J.
Andzelm
,
A.
Scheiner
, and
B.
Delley
,
J. Chem. Phys.
101
,
8894
(
1994
).
54.
A. D.
Becke
,
J. Chem. Phys.
88
,
2547
(
1988
).
55.
JAGUAR v6.1, Schrodinger, LLC, New York,
2005
.
56.
J.
Lee
, in
Chemi- and Bioluminescence
, edited by
J. G.
Burr
(
Marcel-Dekker
,
New York
,
1985
).
57.
M. A.
van der Horst
and
K. J.
Hellingwerf
,
Acc. Chem. Res.
37
,
13
(
2004
).
58.
J. J. P.
Stewart
,
J. Comput. Chem.
10
,
209
(
1989
).
59.
L. X.
Dang
and
B. M.
Pettitt
,
J. Phys. Chem.
91
,
3349
(
1987
).
60.
J. J. P.
Stewart
, MOPAC 2000, Fujitsu Limited, Tokyo, Japan,
1999
.
61.
J.
Almlof
,
K. J.
Faegri
, and
K.
Korsell
,
J. Comput. Chem.
3
,
385
(
1982
).
62.

Selection of these grids for Coulomb/exchange evaluation within JAGUAR is performed by setting the keyword iopt287 to 1, 2, 12, or 9 for the c, m, C, and M grids, respectively. Similarly, the keyword iopt286 can be set to the same values to select the grid which is used for the quadrature of the exchange-correlation contribution.

63.
Y.
Shao
,
L.
Fusti–Molnar
,
Y.
Jung
 et al,
Phys. Chem. Chem. Phys.
8
,
3172
(
2006
).
64.
J. C.
Slater
,
The Self-Consistent Field for Molecules and Solids
(
McGraw-Hill
,
New York
,
1974
).
65.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
66.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
67.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
68.
Y.
Zhao
and
D. G.
Truhlar
,
J. Phys. Chem. A
110
,
13126
(
2006
).
You do not currently have access to this content.