The intrinsic reaction coordinate curve (IRC), normally proposed as a representation of a reaction path, is parametrized as a function of the potential energy rather than the arc-length. This change in the parametrization of the curve implies that the values of the energy of the potential energy surface points, where the IRC curve is located, play the role of reaction coordinate. We use Carathéodory’s relation to derive in a rigorous manner the proposed parametrization of the IRC path. Since this Carathéodory’s relation is the basis of the theory of calculus of variations, then this fact permits to reformulate the IRC model from this mathematical theory. In this mathematical theory, the character of the variational solution (either maximum or minimum) is given through the Weierstrass E-function. As proposed by Crehuet and Bofill [J. Chem. Phys.122, 234105 (2005)], we use the minimization of the Weierstrass E-function, as a function of the potential energy, to locate an IRC path between two minima from an arbitrary curve on the potential energy surface, and then join these two minima. We also prove, from the analysis of the Weierstrass E-function, the mathematical bases for the algorithms proposed to locate the IRC path. The proposed algorithm is applied to a set of examples. Finally, the algorithm is used to locate a discontinuous, or broken, IRC path, namely, when the path connects two first order saddle points through a valley-ridged inflection point.

1.
J.
González
,
X.
Giménez
, and
J. M.
Bofill
,
Phys. Chem. Chem. Phys.
4
,
2921
(
2002
).
2.
W.
Quapp
,
J. Theor. Comput. Chem.
2
,
385
(
2003
).
3.
J.
González
,
X.
Giménez
, and
J. M.
Bofill
,
J. Phys. Chem. A
105
,
5022
(
2001
).
4.
J.
González
,
X.
Giménez
, and
J. M.
Bofill
,
Theor. Chem. Acc.
112
,
75
(
2004
).
5.
P. G.
Mezey
,
Theor. Chim. Acta
58
,
309
(
1981
).
6.
J. N.
Murell
and
K. J.
Laidler
,
Trans. Faraday Soc.
64
,
371
(
1968
).
7.
J. W.
McIver
 Jr.
and
A.
Komornicki
,
J. Am. Chem. Soc.
94
,
2625
(
1972
).
8.
K.
Fukui
,
J. Phys. Chem.
74
,
4161
(
1970
).
9.
H. B.
Schlegel
,
J. Comput. Chem.
24
,
1415
(
2003
).
10.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
,
J. Chem. Phys.
113
,
9901
(
2001
).
11.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
113
,
9908
(
2001
).
12.
S. A.
Trygubenko
and
D. J.
Wales
,
J. Chem. Phys.
120
,
2082
(
2004
).
13.
S. K.
Burger
and
W.
Yang
,
J. Chem. Phys.
124
,
054109
(
2006
).
14.
B.
Peters
,
A.
Heyden
,
A. T.
Bell
, and
A.
Chakraborty
,
J. Chem. Phys.
120
,
7877
(
2004
).
15.
W.
E.
,
W.
Ren
, and
E.
Vanden-Eijnden
,
Phys. Rev. B
66
,
052301
(
2002
).
16.
W.
Quapp
,
J. Chem. Phys.
122
,
174106
(
2005
).
17.
W.
Quapp
,
M.
Hirsch
,
O.
Imig
, and
D.
Heidrich
,
J. Comput. Chem.
19
,
1087
(
1998
).
18.
W.
Quapp
,
M.
Hirsch
, and
D.
Heidrich
,
Theor. Chem. Acc.
100
,
285
(
1998
).
19.
J. M.
Anglada
,
E.
Besalú
,
J. M.
Bofill
, and
R.
Crehuet
,
J. Comput. Chem.
22
,
387
(
2001
).
20.
J. M.
Bofill
and
J. M.
Anglada
,
Theor. Chem. Acc.
105
,
463
(
2001
).
21.
R.
Crehuet
,
J. M.
Bofill
, and
J. M.
Anglada
,
Theor. Chem. Acc.
107
,
130
(
2002
).
22.
K.
Ruedenberg
and
J.-Q.
Sun
,
J. Chem. Phys.
100
,
5836
(
1994
).
23.
A.
Aguilar-Mogas
,
X.
Giménez
, and
J. M.
Bofill
,
Chem. Phys. Lett.
432
,
375
(
2006
).
24.
K.
Fukui
,
Int. J. Quantum Chem., Quantum Chem. Symp.
15
,
633
(
1981
).
25.
R.
Crehuet
and
J. M.
Bofill
,
J. Chem. Phys.
122
,
234105
(
2005
).
26.
A.
Aguilar-Mogas
,
R.
Crehuet
,
X.
Giménez
, and
J. M.
Bofill
,
Mol. Phys.
105
,
2475
(
2007
).
27.
(a)
C.
Carathéodory
,
Variationsrechnung und Partielle Differentialgleichungen Erster Ordnung
(
Teubner
,
Leipzig
,
1935
), pp.
249
251
;
(b) pp.
209
210
;
(c) Chap. 15.
28.
R.
Courant
and
D.
Hilbert
,
Methods of Mathematical Physics
(
Wiley
,
New York
,
1953
).
29.
H.
Rund
,
The Hamilton-Jacobi Theory in the Calculus of Variations
(
Van Nostrand
,
London
,
1966
).
30.
(a)
G. A.
Bliss
,
Lectures on the Calculus of Variations
(
The University of Chicago Press
,
Chicago
,
1946
), pp.
124
132
;
(b) Chap. 1.
31.
W.
Quapp
,
J. Comput. Chem.
25
,
1277
(
2004
).
32.
C.
De Boor
,
A Practical Guide to Splines
(
Springer
,
New York
,
2001
).
33.
K.
Müller
and
L. D.
Brown
,
Theor. Chim. Acta
53
,
75
(
1979
).
34.
W.
Quapp
,
M.
Hirsch
, and
D.
Heidrich
,
Theor. Chem. Acc.
112
,
40
(
2004
).
35.
M.
Hirsch
and
W.
Quapp
,
J. Math. Chem.
36
,
307
(
2004
).
36.
E.
Neria
,
S.
Fischer
, and
M.
Karplus
,
J. Chem. Phys.
105
,
1902
(
1996
).
37.
K. N.
Kudin
and
R.
Car
,
J. Chem. Phys.
122
,
114108
(
2005
).
38.
S.
Wolfe
,
H. B.
Schlegel
,
I. G.
Csizmadia
, and
F.
Bernardi
,
J. Am. Chem. Soc.
97
,
2020
(
1975
).
You do not currently have access to this content.