We have performed extensive ab initio and classical molecular dynamics (MD) simulations of benzene in water in order to examine the unique solvation structures that are formed. Qualitative differences between classical and ab initio MD simulations are found and the importance of various technical simulation parameters is examined. Our comparison indicates that nonpolarizable classical models are not capable of describing the solute-water interface correctly if local interactions become energetically comparable to water hydrogen bonds. In addition, a comparison is made between a rigid water model and fully flexible water within ab initio MD simulations which shows that both models agree qualitatively for this challenging system.

1.
H. A.
Scheraga
,
M.
Khalili
, and
A.
Liwo
,
Annu. Rev. Phys. Chem.
58
,
57
(
2007
).
2.
A.
Wallqvist
,
E.
Gallicchio
, and
R.
Levy
,
J. Phys. Chem. B
105
,
6745
(
2001
).
3.
M.
Allesch
,
E.
Schwegler
, and
G.
Galli
,
J. Phys. Chem. B
111
,
1081
(
2007
).
4.
G.
Ravishanker
,
P. K.
Mehrotra
,
M.
Mezei
, and
D. L.
Beveridge
,
J. Am. Chem. Soc.
106
,
4102
(
1984
).
5.
P.
Linse
,
G.
Karlström
, and
B.
Jönsson
,
J. Am. Chem. Soc.
106
,
4096
(
1984
).
6.
P.
Linse
,
J. Am. Chem. Soc.
112
,
1744
(
1990
).
7.
W. L.
Jorgensen
and
D. L.
Severance
,
J. Am. Chem. Soc.
112
,
4768
(
1990
).
8.
S.
Urahata
,
K.
Coutinho
, and
S.
Canuto
,
Chem. Phys. Lett.
274
,
269
(
1997
).
9.
S.
Urahata
and
S.
Canuto
,
Chem. Phys. Lett.
313
,
235
(
1999
).
10.
A.
Laaksonen
,
P.
Stilbs
, and
R. E.
Wasylishen
,
J. Chem. Phys.
108
,
455
(
1998
).
11.
T. M.
Raschke
and
M.
Levitt
,
J. Phys. Chem. B
108
,
13492
(
2004
).
12.
T. M.
Raschke
and
M.
Levitt
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
6777
(
2005
).
13.
P.
Schravendijk
and
N. F. A.
van der Vegt
,
J. Chem. Theory Comput.
1
,
643
(
2005
).
14.
S.
Ikawa
,
J. Chem. Phys.
123
,
244507
(
2005
).
15.
S.
Suzuki
,
P. G.
Green
,
R. E.
Bumgarner
,
S.
Dasgupta
,
W. A.
Goddard
, and
G. A.
Blake
,
Science
257
,
942
(
1992
).
16.
J. C.
Grossman
,
E.
Schwegler
, and
G.
Galli
,
J. Phys. Chem. B
108
,
15865
(
2004
).
17.
F.
Gygi
, GP, version 1.24.0, a general ab initio molecular dynamics program,
Lawrence Livermore National Laboratory
,
2003
.
18.
F.
Gygi
, the QBOX code,
Lawrence Livermore National Laboratory
,
2005
.
19.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
864
(
1964
).
20.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev. A
140
,
1133
(
1965
).
21.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
80
,
891
(
1998
).
22.
D. R.
Hamann
,
Phys. Rev. B
40
,
2980
(
1989
).
23.
L.
Kleinman
and
D. M.
Bylander
,
Phys. Rev. Lett.
48
,
1425
(
1982
).
24.
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
).
25.
G.
Galli
and
M.
Parrinello
, in
Computer Simulation in Materials Science
, edited by
M.
Meyer
and
V.
Pontikis
(
Kluwer Academic
,
Dordrecht, Netherlands
,
1991
), pp.
283
304
.
26.
J. C.
Grossman
,
E.
Schwegler
,
E. K.
Draeger
,
F.
Gygi
, and
G.
Galli
,
J. Chem. Phys.
120
,
300
(
2004
).
27.
E.
Schwegler
,
J. C.
Grossman
,
F.
Gygi
, and
G.
Galli
,
J. Chem. Phys.
121
,
5400
(
2004
).
28.
M.
Allesch
,
E.
Schwegler
,
F.
Gygi
, and
G.
Galli
,
J. Chem. Phys.
120
,
5192
(
2004
).
29.
Y.
Danten
,
T.
Tassaing
, and
M.
Besnard
,
J. Phys. Chem. A
103
,
3530
(
1999
).
30.
F. C.
Lightstone
,
E.
Schwegler
,
M.
Allesch
,
F.
Gygi
, and
G.
Galli
,
ChemPhysChem
6
,
1745
(
2005
).
31.
K.
Leung
and
S. B.
Rempe
,
Phys. Chem. Chem. Phys.
8
,
2153
(
2006
).
32.
C. J.
Gruenloh
,
J. R.
Carney
,
C. A.
Arrington
,
T. S.
Zwier
,
S. Y.
Fredericks
, and
K. D.
Jordan
,
Science
276
,
1678
(
1997
).
33.
E.
Lindahl
,
B.
Hess
, and
D.
van der Spoel
,
J. Mol. Model.
7
,
306
(
2001
).
34.
G.
Kaminski
,
F. A.
Friesner
,
J.
Tirado-Rives
, and
W. L.
Jorgensen
,
J. Phys. Chem. B
105
,
6474
(
2001
).
35.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
118
,
11225
(
1996
).
36.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
37.
W. L.
Jorgensen
and
J. D.
Madura
,
Mol. Phys.
56
,
1381
(
1985
).
38.
W. L.
Jorgensen
,
J. Am. Chem. Soc.
110
,
1657
(
1988
).
39.
W. R. P.
Scott
,
P. H.
Hunenberger
,
I. G.
Tironi
,
A. E.
Mark
,
S. R.
Billeter
,
J.
Fennen
,
A. E.
Torda
,
T.
Huber
,
P.
Kruger
, and
W. F.
van Gunsteren
,
J. Phys. Chem. A
103
,
3596
(
1999
).
40.
C.
Oostenbrink
,
A.
Villa
,
A. E.
Mark
, and
W. F. V.
Gunsteren
,
J. Comput. Chem.
25
,
1656
(
2004
).
41.
J.
Hermans
,
H. J. C.
Berendsen
,
W. F. V.
Gunsteren
, and
J. P. M.
Postma
,
Biopolymers
23
,
1513
(
1984
).
42.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
,
J. Chem. Phys.
103
,
8577
(
1995
).
43.
J. P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
,
J. Comput. Phys.
23
,
327
(
1977
).
44.
H. J. C.
Berendsen
,
J. P. M.
Postman
,
W. F.
van Gunsteren
,
A.
Dinola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
45.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon
,
Oxford
,
1987
).
46.
M.
Levitt
,
M.
Hirshberg
,
R.
Sharon
,
K. E.
Laidig
, and
V.
Daggett
,
J. Phys. Chem. B
101
,
5051
(
1997
).
47.
W. F.
van Gunsteren
and
M.
Karplus
,
Macromolecules
15
,
1528
(
1982
).
48.
D.
Chandler
,
Nature (London)
417
,
491
(
2002
).
49.
D.
Chandler
,
Nature (London)
437
,
640
(
2005
).
50.
J.
White
,
E.
Schwegler
,
G.
Galli
, and
F.
Gygi
,
J. Chem. Phys.
113
,
4668
(
2000
).
51.
F.
Gygi
,
R. K.
Yates
,
J.
Lorenz
,
E. W.
Draeger
,
F.
Franchetti
,
C. W.
Ueberhuber
,
B. R.
de Supinski
,
S.
Kral
,
J. A.
Gunnels
, and
J. C.
Sexton
, in
SC’05: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing
(
IEEE Computer Society
,
Washington, D.C.
, USA,
2005
), p.
24
.
You do not currently have access to this content.