In this report we introduce an iterative procedure for constructing a quasidiabatic Hamiltonian representing Nstate-coupled electronic states in the vicinity of an arbitrary point in Nint-dimensional nuclear coordinate space. The Hamiltonian, which is designed to compute vibronic spectra employing the multimode vibronic coupling approximation, includes all linear terms which are determined exactly using analytic gradient techniques. In addition, all [Nstate][Nint] quadratic terms, where [n]=n(n+1)2, are determined from energy gradient and derivative coupling information obtained from reliable multireference configuration interaction wave functions. The use of energy gradient and derivative coupling information enables the large number of second order parameters to be determined employing ab initio data computed at a limited number of points (Nint being minimal) and assures a maximal degree of quasidiabaticity. Numerical examples are given in which quasidiabatic Hamiltonians centered around three points on the C3H3N2 potential energy surface (the minimum energy point on the ground state surface and the minimum energy points on the two- and three-state seams of conical intersection) were computed and compared. A method to modify the conical intersection based Hamiltonians to better describe the region of the ground state minimum is introduced, yielding improved agreement with ab initio results, particularly in the case of the Hamiltonian defined at the two-state minimum energy crossing.

1.
H.
Köppel
,
W.
Domcke
, and
L. S.
Cederbaum
,
Adv. Chem. Phys.
57
,
59
(
1984
).
2.
M.
Döscher
,
H.
Köppel
, and
P. G.
Szalay
,
J. Chem. Phys.
117
,
2645
(
2002
).
3.
S.
Mahapatra
,
V.
Vallet
,
C.
Woywod
,
H.
Köppel
, and
W.
Domcke
,
Chem. Phys.
304
,
17
(
2004
).
4.
H.
Koppel
,
W.
Domcke
, and
L. S.
Cederbaum
, in
Conical Intersections
, edited by
W.
Domcke
,
D. R.
Yarkony
, and
H.
Koppel
(
World Scientific
,
River Edge, NJ
,
2004
), Vol.
15
, p.
323
.
5.
C. A.
Mead
and
D. G.
Truhlar
,
J. Chem. Phys.
77
,
6090
(
1982
).
6.
S.
Mahapatra
,
G. A.
Worth
,
H.-D.
Meyer
,
L. S.
Cederbaum
, and
H.
Köppel
,
J. Phys. Chem. A
105
,
5567
(
2001
).
7.
M.
Nooijen
,
Int. J. Quantum Chem.
95
,
768
(
2003
).
8.
T.
Ichino
,
A. J.
Gianola
,
W. C.
Lineberger
, and
J. F.
Stanton
,
J. Chem. Phys.
125
,
084312
(
2006
).
9.
R. A.
Young
 Jr.
and
D. R.
Yarkony
,
J. Chem. Phys.
125
,
234301
(
2006
).
10.
H.
Lischka
,
M.
Dallos
,
P.
Szalay
,
D. R.
Yarkony
, and
R.
Shepard
,
J. Chem. Phys.
120
,
7322
(
2004
).
11.
C. A.
Mead
,
J. Chem. Phys.
78
,
807
(
1983
).
12.
D. R.
Yarkony
,
J. Phys. Chem. A
101
,
4263
(
1997
).
13.
M.
Baer
,
Phys. Rep.
358
,
75
(
2002
).
14.
D. R.
Yarkony
,
J. Chem. Phys.
123
,
204101
(
2005
).
15.
M. S.
Schuurman
and
D. R.
Yarkony
,
J. Chem. Phys.
124
,
124109
(
2006
).
16.
D. R.
Yarkony
,
J. Chem. Phys.
123
,
134106
(
2005
).
17.
S.
Matsika
and
D. R.
Yarkony
,
J. Am. Chem. Soc.
125
,
12428
(
2003
).
18.
T. H.
Dunning
and
P. J.
Hay
, in
Modern Theoretical Chemistry
, edited by
H. F.
Schaefer
(
Plenum
,
New York
,
1976
), Vol.
3
.
19.
J.
Paldus
, in
The Unitary Group for the Evaluation of Electronic Energy Matrix Elements
, edited by
J.
Hinze
(
Springer-Verlag
,
Berlin
,
1981
).
20.
I.
Shavitt
, in
The Unitary Group for the Evaluation of Electronic Energy Matrix Elements
, edited by
J.
Hinze
(
Springer-Verlag
,
Berlin
,
1981
).
21.
I.
Shavitt
, in
Mathematical Frontiers in Computational Chemical Physics
, edited by
D. G.
Truhlar
(
Springer
,
New York
,
1988
).
22.
H.
Lischka
,
R.
Shepard
,
I.
Shavitt
 et al, COLUMBUS, an ab initio electronic structure program,
2003
;
H.
Lischka
,
M.
Dallos
,
P.
Szalay
,
D. R.
Yarkony
, and
R.
Shepard
,
J. Chem. Phys.
120
,
7322
(
2004
).
[PubMed]
23.
G.
Fogarasi
,
X.
Zhou
,
P. W.
Taylor
, and
P.
Pulay
,
J. Am. Chem. Soc.
114
,
8191
(
1992
).
24.
K.
Ruedenberg
and
G. J.
Atchity
,
J. Chem. Phys.
99
,
3799
(
1993
).
25.
D. R.
Yarkony
,
Acc. Chem. Res.
31
,
511
(
1998
).
26.
S.
Han
and
D. R.
Yarkony
,
J. Chem. Phys.
119
,
5058
(
2003
).
27.
M. S.
Schuurman
and
D. R.
Yarkony
,
J. Chem. Phys.
124
,
244103
(
2006
).
28.
M. S.
Schuurman
and
D. R.
Yarkony
,
J. Phys. Chem. B
110
,
19031
(
2006
).
You do not currently have access to this content.