Since the early stage of the study of Hamilton chaos, semiclassical quantization based on the low-order Wentzel-Kramers-Brillouin theory, the primitive semiclassical approximation to the Feynman path integrals (or the so-called Van Vleck propagator), and their variants have been suffering from difficulties such as divergence in the correlation function, nonconvergence in the trace formula, and so on. These difficulties have been hampering the progress of quantum chaos, and it is widely recognized that the essential drawback of these semiclassical theories commonly originates from the erroneous feature of the amplitude factors in their applications to classically chaotic systems. This forms a clear contrast to the success of the Einstein-Brillouin-Keller quantization condition for regular (integrable) systems. We show here that energy quantization of chaos in semiclassical regime is, in principle, possible in terms of constructive and destructive interference of phases alone, and the role of the semiclassical amplitude factor is indeed negligibly small, as long as it is not highly oscillatory. To do so, we first sketch the mechanism of semiclassical quantization of energy spectrum with the Fourier analysis of phase interference in a time correlation function, from which the amplitude factor is practically factored out due to its slowly varying nature. In this argument there is no distinction between integrability and nonintegrability of classical dynamics. Then we present numerical evidence that chaos can be indeed quantized by means of amplitude-free quasicorrelation functions and Heller’s frozen Gaussian method. This is called phase quantization. Finally, we revisit the work of Yamashita and Takatsuka [Prog. Theor. Phys. Suppl.161, 56 (2007)] who have shown explicitly that the semiclassical spectrum is quite insensitive to smooth modification (rescaling) of the amplitude factor. At the same time, we note that the phase quantization naturally breaks down when the oscillatory nature of the amplitude factor is comparable to that of the phases. Such a case generally appears when the Planck constant of a large magnitude pushes the dynamics out of the semiclassical regime.

1.
L. E.
Reichl
,
The Transition to Chaos
(
Springer
,
New York
,
1992
);
ibid. (
University Press
, Cambridge,
1993
).
2.
Quantum Chaos Y2K Proceedings of the Nobel Symposium 116
, edited by
K.-F.
Berggren
and
S.
Aberg
, Physica Scripta Vol.
T90
(
The Royal Swedish Academy of Sciences
,
Stockholm, Sweden
,
2001
).
3.
K. G.
Kay
,
J. Chem. Phys.
101
,
2250
(
1994
).
4.
A.
Inoue-Ushiyama
and
K.
Takatsuka
,
Phys. Rev. E
64
,
056223
(
2001
).
5.
W. H.
Miller
,
J. Chem. Phys.
53
,
3578
(
1970
);
E. J.
Heller
,
J. Chem. Phys.
94
,
2723
(
1991
);
M. A.
Sepúlveda
and
E. J.
Heller
,
J. Chem. Phys.
101
,
8004
(
1994
);
G.
Campolieti
and
P.
Brumer
,
Phys. Rev. A
50
,
997
(
1994
);
[PubMed]
K. G.
Kay
,
J. Chem. Phys.
100
,
4377
(
1994
);
W. H.
Miller
,
J. Phys. Chem. A
105
,
2942
(
2001
).
6.
W. H.
Miller
,
Adv. Chem. Phys.
25
,
69
(
1974
).
7.
L. S.
Schulman
,
Techniques and Applications of Path Integration
(
Wiley
,
New York
,
1981
);
P.
Gaspard
,
D.
Alonso
, and
I.
Burghhardt
,
Adv. Chem. Phys.
90
,
105
(
1995
).
8.
M. V.
Berry
and
N. L.
Balazs
,
J. Phys. A
12
,
625
(
1979
).
9.
S.
Tomsovic
and
E. J.
Heller
,
Phys. Rev. Lett.
67
,
664
(
1991
);
[PubMed]
S.
Tomsovic
and
E. J.
Heller
,
Phys. Rev. E
47
,
282
(
1993
).
10.
R. J.
Hinde
,
R. S.
Berry
, and
D. J.
Wales
,
J. Chem. Phys.
96
,
1376
(
1992
);
R. J.
Hinde
and
R. S.
Berry
,
J. Chem. Phys.
99
,
2942
(
1993
).
11.
K.
Hotta
and
K.
Takatsuka
,
J. Phys. A
36
,
4785
(
2003
).
12.
M. C.
Gutzwiller
,
J. Math. Phys.
11
,
1791
(
1970
);
M. C.
Gutzwiller
,
J. Math. Phys.
12
,
343
(
1971
);
M. C.
Gutzwiller
,
Chaos in Classical and Quantum Mechanics
(
Springer
,
Berlin
,
1990
).
14.
M. V.
Berry
and
J. P.
Keating
,
J. Phys. A
23
,
4839
(
1990
);
M. V.
Berry
and
J. P.
Keating
,
Proc. R. Soc. London, Ser. A
437
,
151
(
1992
).
15.
P.
Cvitanović
and
B.
Eckhardt
,
Phys. Rev. Lett.
63
,
823
(
1989
).
16.
F.
Christiansen
and
P.
Cvitanović
,
Chaos
2
,
61
(
1992
).
17.
M.
Sieber
and
F.
Steiner
,
Phys. Rev. Lett.
67
,
1941
(
1991
).
18.
R.
Aurich
and
F.
Steiner
,
Phys. Rev. A
45
,
583
(
1992
).
19.
T.
Szeredi
and
D. A.
Goodings
,
Phys. Rev. E
48
,
3529
(
1993
).
20.
G.
Vattay
and
P. E.
Rosenqvist
,
Phys. Rev. Lett.
76
,
335
(
1996
).
21.
S.
Takahashi
and
K.
Takatsuka
,
Phys. Rev. A
70
,
052103
(
2004
).
22.
S.
Takahashi
and
K.
Takatsuka
,
J. Chem. Phys.
124
,
144101
(
2006
).
23.
H.
Teramoto
and
K.
Takatsuka
,
J. Chem. Phys.
125
,
194301
(
2006
).
24.
K.
Hotta
and
K.
Takatsuka
,
J. Chem. Phys.
122
,
174108
(
2005
).
25.
T.
Yamashita
and
K.
Takatsuka
,
Prog. Theor. Phys. Suppl.
161
,
56
(
2007
).
26.
K.
Takatsuka
,
S.
Takahashi
,
K. Y. W.
Patrick
, and
T.
Yamashita
,
J. Chem. Phys.
126
,
021104
(
2007
).
27.
E. J.
Heller
,
J. Chem. Phys.
75
,
2923
(
1981
).
28.
C.
Jaffé
and
W. P.
Reinhardt
,
J. Chem. Phys.
77
,
5191
(
1982
).
29.
R. B.
Shirts
and
W. P.
Reinhardt
,
J. Chem. Phys.
77
,
5204
(
1982
).
30.
J. B.
Delos
and
R. T.
Swimm
,
Chem. Phys. Lett.
47
,
76
(
1977
);
R. T.
Swimm
and
J. B.
Delos
,
J. Chem. Phys.
71
,
1706
(
1979
).
31.
J.
Main
and
G.
Wunner
,
Phys. Rev. Lett.
82
,
3038
(
1999
).
32.
M. V.
Berry
and
M.
Tabor
,
Proc. R. Soc. London, Ser. A
349
,
101
(
1976
);
M. V.
Berry
and
M.
Tabor
,
J. Phys. A
10
,
371
(
1977
).
33.
H.
Ushiyama
and
K.
Takatsuka
,
J. Chem. Phys.
122
,
224112
(
2005
).
34.

In numerical calculations in a digital computer, any trajectory sampled in a bound state is practically periodic within the accuracy provided by a computer used, if very long period (T) is allowed: In regular systems, a multiply periodic orbit on a torus is practically “periodic” since the incommensurability based on irrational ratio of the winding numbers cannot be exactly treated, while classical phase space of chaos is densely packed by the infinite (countably infinite) periodic orbits, whose numbers are known to proliferate as exp(hT)T, where h is the Liapunov exponent.

35.
A.
Inoue-Ushiyama
and
K.
Takatsuka
,
Phys. Rev. Lett.
78
,
1404
(
1997
);
A.
Inoue-Ushiyama
and
K.
Takatsuka
,
Phys. Rev. A
59
,
3256
(
1999
).
36.
H.
Goldstein
,
Classical Mechanics
(
Addison-Wesley
,
New York
,
1980
).
37.
K.
Takatsuka
,
Phys. Rev. E
64
,
016224
(
2001
).
38.
J.
Shao
and
N.
Makri
,
J. Phys. Chem. A
103
,
7753
(
1999
);
J.
Shao
and
N.
Makri
,
J. Phys. Chem. A
103
,
9479
(
1999
).
39.
S.
Zhang
and
E.
Pollak
,
J. Chem. Phys.
121
,
3384
(
2004
).
40.

It should be recalled that the periodic orbits in the Gutzwiller theory (Ref. 12) arose from the stationary-phase condition applied to the phase factors only, and the present discussion is consistent with this fact.

41.
M. F.
Herman
and
E.
Kluk
,
Chem. Phys.
91
,
27
(
1984
).
42.
S.
Takahashi
and
K.
Takatsuka
,
Phys. Rev. A
69
,
022110
(
2004
).
43.
H.
Ushiyama
,
Y.
Arasaki
, and
K.
Takatsuka
,
Chem. Phys. Lett.
346
,
169
(
2001
).
44.
K.
Takahashi
and
K.
Ikeda
,
J. Chem. Phys.
99
,
8680
(
1993
).
45.
46.
B.
Eckhardt
,
G.
Hose
, and
E.
Pollak
,
Phys. Rev. A
39
,
3776
(
1989
).
47.
G.
Campolieti
and
P.
Brumer
,
J. Chem. Phys.
109
,
2999
(
1998
).
48.
Y. W.
Koh
and
K.
Takatsuka
(unpublished).
You do not currently have access to this content.