Tensor product decompositions with optimal separation rank provide an interesting alternative to traditional Gaussian-type basis functions in electronic structure calculations. We discuss various applications for a new compression algorithm, based on the Newton method, which provides for a given tensor the optimal tensor product or so-called best separable approximation for fixed Kronecker rank. In combination with a stable quadrature scheme for the Coulomb interaction, tensor product formats enable an efficient evaluation of Coulomb integrals. This is demonstrated by means of best separable approximations for the electron density and Hartree potential of small molecules, where individual components of the tensor product can be efficiently represented in a wavelet basis. We present a fairly detailed numerical analysis, which provides the basis for further improvements of this novel approach. Our results suggest a broad range of applications within density fitting schemes, which have been recently successfully applied in quantum chemistry.

1.
2.
J.
Almlöf
, in
Modern Electronic Structure Theory
, edited by
D. R.
Yarkony
(
World Scientific
,
Singapore
,
1995
), Vol.
II
, p.
110
.
3.
M.
Griebel
and
S.
Knapek
,
Constructive Approx.
16
,
525
(
2000
).
4.
T.
Gerstner
and
M.
Griebel
,
Computing
71
,
65
(
2003
).
5.
H.-J.
Bungartz
and
M.
Griebel
,
Acta Numerica
13
,
147
(
2004
).
6.
R. A.
DeVore
,
Acta Numerica
7
,
51
(
1998
).
7.
P.-A.
Nitsche
,
Constructive Approx.
24
,
49
(
2006
).
8.
H.-J.
Flad
,
W.
Hackbusch
, and
R.
Schneider
,
Math. Modell. Numer. Anal.
40
,
49
(
2006
).
9.
H.-J.
Flad
,
W.
Hackbusch
, and
R.
Schneider
,
Math. Modell. Numer. Anal.
41
,
261
(
2007
).
10.
C. F.
Van Loan
,
J. Comput. Appl. Math.
123
,
85
(
2000
).
11.
L.
De Lathauwer
,
B.
De Moor
, and
J.
Vandewalle
,
SIAM J. Matrix Anal. Appl.
26
,
295
(
2004
).
12.
E.
Tyrtyshnikov
,
Sbornik. Mathematics.
194
,
941
(
2003
).
13.
E.
Tyrtyshnikov
,
Linear Algebra and its Applications
379
,
423
(
2004
).
14.
J. M.
Ford
and
E.
Tyrtyshnikov
,
SIAM J. Sci. Comput. (USA)
25
,
961
(
2003
).
15.
J. M.
Ford
and
E.
Tyrtyshnikov
,
Numer. Algorithms
40
,
125
(
2005
).
16.
W.
Hackbusch
,
B. N.
Khoromskij
, and
E.
Tyrtyshnikov
,
J. Numer. Math.
13
,
119
(
2005
).
17.
W.
Hackbusch
and
B. N.
Khoromskij
,
SIAM J. Matrix Anal. Appl.
(to be published).
18.
W.
Hackbusch
and
B. N.
Khoromskij
,
Journal of Complexity
, in press.
19.
A.
Smilde
,
R.
Bro
, and
P.
Geladi
,
Multi-way Analysis with Applications in the Chemical Sciences
(
Wiley
,
Chichester
,
2004
).
20.
G.
Beylkin
and
M. J.
Mohlenkamp
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
10246
(
2002
).
21.
G.
Beylkin
and
M. J.
Mohlenkamp
,
SIAM J. Sci. Comput. (USA)
26
,
2133
(
2005
).
22.
I.
Ibraghimov
,
Numer. Linear Algebra Appl.
9
,
551
(
2002
).
23.
B. N.
Khoromskij
,
Comput. Methods Appl. Math.
6
,
194
(
2006
).
24.
P. D.
Dacre
and
M.
Elder
,
Mol. Phys.
22
,
593
(
1971
).
25.
G.
Deslauriers
and
S.
Dubuc
,
Constructive Approx.
5
,
49
(
1989
).
26.
L.
Grasedyck
(private communication).
27.
M.
Espig
, Ph.D. thesis,
MPI-MIS Leipzig
,
2007
.
28.
T.
Zhang
and
G. H.
Golub
,
SIAM J. Matrix Anal. Appl.
23
,
534
(
2001
).
29.
E.
Polak
,
Optimization: Algorithms and Consistent Approximations
(
Springer
,
New York
,
1997
).
30.
B. N.
Khoromskij
and
V.
Khoromskaia
,
Cent. Eur. J. Math., Leipzig
,
5
,
523
(
2007
).
31.
E. J.
Baerends
,
D. E.
Ellis
, and
P.
Ros
,
Chem. Phys.
2
,
41
(
1973
).
32.
H.
Sambe
and
R. H.
Felton
,
J. Chem. Phys.
62
,
1122
(
1975
).
33.
B. I.
Dunlap
,
J. W. D.
Connolly
, and
J. R.
Sabin
,
J. Chem. Phys.
71
,
3396
(
1979
).
34.
J.
Andzelm
and
E.
Wimmer
,
J. Chem. Phys.
96
,
1280
(
1992
).
35.
N.
Godbout
,
D. R.
Salahub
,
J.
Andzelm
, and
E.
Wimmer
,
Can. J. Chem.
70
,
560
(
1992
).
36.
V.
Termath
and
N. C.
Handy
,
Chem. Phys. Lett.
230
,
17
(
1994
).
37.
K.
Eichkorn
,
O.
Treutler
,
H.
Öhm
,
M.
Häser
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
240
,
283
(
1995
).
38.
C.-K.
Skylaris
,
L.
Gagliardi
,
N. C.
Handy
,
A. G.
Ioannou
,
S.
Spencer
, and
A.
Willetts
,
J. Mol. Struct.: THEOCHEM
501–502
,
229
(
2000
).
39.
F. R.
Manby
and
P. J.
Knowles
,
Phys. Rev. Lett.
87
,
163001
(
2001
).
40.
F. R.
Manby
,
P. J.
Knowles
, and
A. W.
Lloyd
,
J. Chem. Phys.
115
,
9144
(
2001
).
41.
R.
Polly
,
H.-J.
Werner
,
F. R.
Manby
, and
P. J.
Knowles
,
Mol. Phys.
102
,
2311
(
2004
).
42.
C.
Fonseca Guerra
,
J. G.
Snijders
,
G.
te Velde
, and
E. J.
Baerends
,
Theor. Chem. Acc.
99
,
391
(
1998
).
43.
B. I.
Dunlap
,
Phys. Chem. Chem. Phys.
2
,
2113
(
2000
).
44.
P. M. W.
Gill
,
B. G.
Johnson
,
J. A.
Pople
, and
S. W.
Taylor
,
J. Chem. Phys.
96
,
7178
(
1992
).
45.
Y.
Jung
,
A.
Sodt
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
6692
(
2005
).
46.
P. M. W.
Gill
,
A. T. B.
Gilbert
,
S. W.
Taylor
,
G.
Friesecke
, and
M.
Head-Gordon
,
J. Chem. Phys.
123
,
061101
(
2005
).
47.
S. R.
Chinnamsetty
, Ph.D. thesis,
MPI-MIS Leipzig
,
2007
.
48.
G.
Beylkin
and
L.
Monzón
,
Appl. Comput. Harmon. Anal.
19
,
17
(
2005
).
49.
W.
Hackbusch
and
B. N.
Khoromskij
,
Computing
76
,
177
(
2006
).
51.
R. J.
Harrison
,
G. I.
Fann
,
T.
Yanai
,
Z.
Gan
, and
G.
Beylkin
,
J. Chem. Phys.
121
,
11587
(
2004
).
52.
T.
Yanai
,
G. I.
Fann
,
Z.
Gan
,
R. J.
Harrison
, and
G.
Beylkin
,
J. Chem. Phys.
121
,
2866
(
2004
);
[PubMed]
T.
Yanai
,
G. I.
Fann
,
Z.
Gan
,
R. J.
Harrison
, and
G.
Beylkin
,
J. Chem. Phys.
121
,
6680
(
2004
).
[PubMed]
53.
T.
Deutsch
,
S.
Goedecker
,
X.
Gonze
 et al., BIGDFT, a wavelet based DFT program.
54.
L.
Genovese
,
T.
Deutsch
,
A.
Neelov
,
S.
Goedecker
, and
G.
Beylkin
, e-print arXiv:cond-mat/0605371v1.
55.
M.
Dupuis
,
J.
Rys
, and
H. F.
King
,
J. Chem. Phys.
65
,
111
(
1976
).
56.
G.
Beylkin
,
R. R.
Coifman
, and
V.
Rokhlin
,
Commun. Pure Appl. Math.
44
,
141
(
1991
).
57.
G.
Beylkin
,
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
6
,
1716
(
1992
).
58.
H.-J.
Flad
,
W.
Hackbusch
,
D.
Kolb
, and
R.
Schneider
,
J. Chem. Phys.
116
,
9641
(
2002
).
59.
W.
Dahmen
,
S.
Prößdorf
, and
R.
Schneider
,
Math. Z.
215
,
583
(
1994
).
60.
W.
Dahmen
,
S.
Prößdorf
, and
R.
Schneider
,
Adv. Comput. Math.
1
,
259
(
1993
).
61.
F.
Stenger
,
Numerical Methods Based on Sinc and Analytic Functions
(
Springer
,
New York
,
1993
).
62.
S.
Schwinger
, MPI MIS report, Leipzig,
2007
.
63.
D.
Sundholm
,
J. Chem. Phys.
122
,
194107
(
2005
).
64.
H.-J.
Werner
,
P. J.
Knowles
,
R. D.
Amos
 et al., MOLPRO, a package of ab initio programs.
65.
F.
Weigend
,
Phys. Chem. Chem. Phys.
4
,
4285
(
2002
).
66.
F.
Weigend
,
Phys. Chem. Chem. Phys.
8
,
1057
(
2006
).
67.
I.
Daubechies
,
Ten Lectures on Wavelets
,
CBMS-NSF Regional Conference Series in Applied Mathematics
, 61 (Society for Industrial and Applied Mathematics, Philadelphia (
1992
).
68.
S.
Mallat
,
A Wavelet Tour of Signal Processing
(
Academic
,
San Diego
,
1998
).
69.
W.
Sweldens
,
Appl. Comput. Harmon. Anal.
3
,
186
(
1996
).
You do not currently have access to this content.