An effective and general algorithm is suggested for variational vibrational calculations of N-atomic molecules using orthogonal, rectilinear internal coordinates. The protocol has three essential parts. First, it advocates the use of the Eckart-Watson Hamiltonians of nonlinear or linear reference configuration. Second, with the help of an exact expression of curvilinear internal coordinates (e.g., valence coordinates) in terms of orthogonal, rectilinear internal coordinates (e.g., normal coordinates), any high-accuracy potential or force field expressed in curvilinear internal coordinates can be used in the calculations. Third, the matrix representation of the appropriate Eckart-Watson Hamiltonian is constructed in a discrete variable representation, in which the matrix of the potential energy operator is always diagonal, whatever complicated form the potential function assumes, and the matrix of the kinetic energy operator is a sparse matrix of special structure. Details of the suggested algorithm as well as results obtained for linear and nonlinear test cases including H2O, H3+, CO2, HCNHNC, and CH4 are presented.

1.
M. G.
Bucknell
,
N. C.
Handy
, and
S. F.
Boys
,
Mol. Phys.
28
,
759
(
1974
).
2.
R. J.
Whitehead
and
N. C.
Handy
,
J. Mol. Spectrosc.
55
,
356
(
1975
).
3.
J. K. G.
Watson
,
Mol. Phys.
15
,
479
(
1968
).
4.
J. K. G.
Watson
,
Mol. Phys.
19
,
465
(
1970
).
5.
G. D.
Carney
,
L. L.
Sprandel
, and
C. W.
Kern
,
Adv. Chem. Phys.
37
,
305
(
1978
).
6.
J. T.
Hougen
,
P. R.
Bunker
, and
J. W. C.
Johns
,
J. Mol. Spectrosc.
34
,
136
(
1970
).
7.
B. T.
Sutcliffe
and
J.
Tennyson
,
Int. J. Quantum Chem.
39
,
183
(
1991
).
8.
K. M.
Dunn
,
J. E.
Boggs
, and
P.
Pulay
,
J. Chem. Phys.
86
,
5088
(
1987
).
9.
J. O.
Jung
and
R. B.
Gerber
,
J. Chem. Phys.
105
,
10332
(
1996
).
10.
S.
Carter
,
S. J.
Culik
, and
J. M.
Bowman
,
J. Chem. Phys.
107
,
10458
(
1997
).
11.
S.
Carter
and
J. M.
Bowman
,
J. Chem. Phys.
108
,
4397
(
1998
).
12.
J. M.
Bowman
,
S.
Carter
, and
X.
Huang
,
Int. Rev. Phys. Chem.
22
,
533
(
2003
).
13.
T.
Seideman
and
W. H.
Miller
,
J. Chem. Phys.
97
,
2499
(
1992
).
14.
G. G.
Balint-Kurti
and
P.
Pulay
,
J. Mol. Struct.: THEOCHEM
341
,
1
(
1995
).
15.
T.
Yonehara
,
T.
Yamamoto
, and
S.
Kato
,
Chem. Phys. Lett.
393
,
98
(
2004
).
16.
M. J.
Bramley
and
T.
Carrington
,
J. Chem. Phys.
99
,
8519
(
1993
).
17.
F.
Wang
,
F. R. W.
McCourt
, and
E. I.
von Nagy-Felsobuki
,
J. Mol. Struct.: THEOCHEM
497
,
227
(
2000
).
18.
B.
Fehrensen
,
D.
Luckhaus
, and
M.
Quack
,
Z. Phys. Chem.
209
,
1
(
1999
).
19.
B.
Fehrensen
,
D.
Luckhaus
, and
M.
Quack
,
Chem. Phys. Lett.
300
,
312
(
1999
).
20.
D.
Luckhaus
,
J. Chem. Phys.
113
,
1329
(
2000
).
21.
D.
Luckhaus
,
J. Chem. Phys.
118
,
8797
(
2003
).
22.
G.
Czakó
,
T.
Furtenbacher
,
A. G.
Császár
, and
V.
Szalay
,
Mol. Phys.
102
,
2411
(
2004
);
T.
Furtenbacher
,
G.
Czakó
,
B. T.
Sutcliffe
,
A. G.
Császár
, and
V.
Szalay
,
J. Mol. Struct.
780–781
,
283
(
2006
).
23.
O. L.
Polyansky
,
A. G.
Császár
,
S. V.
Shirin
,
N. F.
Zobov
,
P.
Barletta
,
J.
Tennyson
,
D. W.
Schwenke
, and
P. J.
Knowles
,
Science
299
,
539
(
2003
);
[PubMed]
P.
Barletta
,
S. V.
Shirin
,
N. F.
Zobov
,
O. L.
Polyansky
,
J.
Tennyson
,
E. F.
Valeev
, and
A. G.
Császár
,
J. Chem. Phys.
125
,
204307
(
2006
).
[PubMed]
24.
D. O.
Harris
,
G. G.
Engerholm
, and
W. D.
Gwinn
,
J. Chem. Phys.
43
,
1515
(
1965
).
25.
A. S.
Dickinson
and
P. R.
Certain
,
J. Chem. Phys.
49
,
4209
(
1968
).
26.
J. C.
Light
and
T.
Carrington
, Jr.
,
Adv. Chem. Phys.
114
,
263
(
2000
).
27.
C.
Lanczos
,
J. Res. Natl. Bur. Stand.
45
,
255
(
1950
).
28.
O. L.
Polyansky
,
R.
Prosmiti
,
W.
Klopper
, and
J.
Tennyson
,
Mol. Phys.
98
,
261
(
2000
).
29.
A.
Chédin
,
J. Mol. Spectrosc.
76
,
430
(
1979
).
30.
T.
van Mourik
,
G. J.
Harris
,
O. L.
Polyansky
,
J.
Tennyson
,
A. G.
Császár
, and
P. J.
Knowles
,
J. Chem. Phys.
115
,
3706
(
2001
).
31.
D. W.
Schwenke
and
H.
Partridge
,
Spectrochim. Acta, Part A
57
,
887
(
2001
).
32.
B. T.
Sutcliffe
, in
Handbook of Molecular Physics and Quantum Chemistry
, edited by
S.
Wilson
(
Wiley
,
Chichester
,
2003
), Vol.
1
, P. 6, Chap. 32, pp.
501
525
.
34.
B. T.
Darling
and
D. M.
Dennison
,
Phys. Rev.
57
,
128
(
1940
).
35.
Yu. S.
Makushkin
and
O. N.
Ulenikov
,
J. Mol. Spectrosc.
68
,
1
(
1977
).
36.
R.
Bartholomae
,
D.
Martin
, and
B. T.
Sutcliffe
,
J. Mol. Spectrosc.
87
,
367
(
1981
).
37.
J. T.
Hougen
,
J. Chem. Phys.
36
,
519
(
1962
).
38.
A. G.
Császár
and
I. M.
Mills
,
Spectrochim. Acta, Part A
53
,
1101
(
1997
).
39.
R. W.
Redding
and
F. O.
Meyer
 III
,
J. Mol. Spectrosc.
74
,
486
(
1979
).
40.
V.
Szalay
,
J. Chem. Phys.
99
,
1978
(
1993
).
41.
W. D.
Allen
, INTDER2000, a general program which performs various vibrational analysis and higher-order nonlinear transformations among force field representations;
W. D.
Allen
,
A. G.
Császár
,
V.
Szalay
, and
I. M.
Mills
,
Mol. Phys.
89
,
1213
(
1996
);
W. D.
Allen
and
A. G.
Császár
,
J. Chem. Phys.
98
,
2983
(
1993
).
42.
F. T.
Smith
,
Phys. Rev. Lett.
45
,
1157
(
1980
).
43.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
119
,
101
(
2003
).
44.
P. R.
Bunker
and
P.
Jensen
,
Molecular Symmetry and Spectroscopy
(
NRC
,
Ottawa
,
1998
).
45.
A.
Sayvetz
,
J. Chem. Phys.
7
,
383
(
1939
).
46.
T. J.
Lee
,
J. M. L.
Martin
, and
P. R.
Taylor
,
J. Chem. Phys.
102
,
254
(
1995
).
47.
D.
Papoušek
and
M. R.
Aliev
,
Molecular Vibrational-Rotational Spectra
(
Academia
,
Prague
,
1982
).
You do not currently have access to this content.