A new scheme for obtaining the approximate correlation energy in the divide-and-conquer (DC) method of Yang [Phys. Rev. Lett.66, 1438 (1991)] is presented. In this method, the correlation energy of the total system is evaluated by summing up subsystem contributions, which are calculated from subsystem orbitals based on a scheme for partitioning the correlation energy. We applied this method to the second-order Møller-Plesset perturbation theory (MP2), which we call DC-MP2. Numerical assessment revealed that this scheme provides a reliable correlation energy with significantly less computational cost than the conventional MP2 calculation.

1.
S.
Goedecker
,
Rev. Mod. Phys.
71
,
1085
(
1999
).
2.
S. Y.
Wu
and
C. S.
Jayanthi
,
Phys. Rep.
358
,
1
(
2002
).
4.
W.
Yang
and
T.-S.
Lee
,
J. Chem. Phys.
103
,
5674
(
1995
).
5.
T.
Akama
,
M.
Kobayashi
, and
H.
Nakai
,
J. Comput. Chem.
28
,
2003
(
2007
).
6.
A.
Imamura
,
Y.
Aoki
, and
K.
Maekawa
,
J. Chem. Phys.
95
,
5419
(
1991
);
F. L.
Gu
,
Y.
Aoki
,
J.
Korchowiec
,
A.
Imamura
, and
B.
Kirtman
,
J. Chem. Phys.
121
,
10385
(
2004
);
[PubMed]
J.
Korchowiec
,
F. L.
Gu
,
A.
Imamura
,
B.
Kirtman
, and
Y.
Aoki
,
Int. J. Quantum Chem.
102
,
785
(
2005
).
7.
S. R.
Gadre
,
R. N.
Shirsat
, and
A. C.
Limaye
,
J. Phys. Chem.
98
,
9165
(
1994
);
K.
Babu
,
V.
Ganesh
,
S. R.
Gadre
, and
N. E.
Ghermani
,
Theor. Chem. Acc.
111
,
255
(
2004
).
8.
P. G.
Mezey
,
J. Math. Chem.
18
,
141
(
1995
);
T. E.
Exner
and
P. G.
Mezey
,
J. Phys. Chem. A
108
,
4301
(
2004
).
9.
K.
Kitaura
,
E.
Ikeo
,
T.
Asada
,
T.
Nakano
, and
M.
Uebayashi
,
Chem. Phys. Lett.
313
,
701
(
1999
);
T.
Nakano
,
T.
Kaminuma
,
T.
Sato
,
K.
Fukuzawa
,
Y.
Akiyama
,
M.
Uebayahi
, and
K.
Kitaura
,
Chem. Phys. Lett.
351
,
475
(
2002
);
D. G.
Fedorov
and
K.
Kitaura
,
J. Chem. Phys.
120
,
6832
(
2004
);
[PubMed]
D. G.
Fedorov
,
T.
Ishida
, and
K.
Kitaura
,
J. Phys. Chem. A
109
,
2638
(
2005
);
[PubMed]
D. G.
Fedorov
and
K.
Kitaura
,
Chem. Phys. Lett.
433
,
182
(
2006
).
10.
D. W.
Zhang
and
J. Z. H.
Zhang
,
J. Chem. Phys.
119
,
3599
(
2003
);
Y.
Mei
,
D. W.
Zhang
, and
J. Z. H.
Zhang
,
J. Phys. Chem. A
109
,
2
(
2005
).
[PubMed]
11.
G. P.
Das
,
A. T.
Yeates
, and
D. S.
Dudis
,
Int. J. Quantum Chem.
92
,
22
(
2003
).
12.
W.
Li
,
T.
Fang
, and
S.
Li
,
J. Chem. Phys.
124
,
154102
(
2006
).
13.
V.
Deev
and
M. A.
Collins
,
J. Chem. Phys.
122
,
154102
(
2005
).
15.
D. G.
Fedorov
and
K.
Kitaura
,
J. Chem. Phys.
121
,
2483
(
2004
);
[PubMed]
Y.
Mochizuki
,
S.
Koikegami
,
T.
Nakano
,
S.
Amari
, and
K.
Kitaura
,
Chem. Phys. Lett.
396
,
473
(
2004
);
D. G.
Fedorov
and
K.
Kitaura
,
J. Chem. Phys.
122
,
054108
(
2005
);
D. G.
Fedorov
and
K.
Kitaura
,
J. Chem. Phys.
123
,
134103
(
2005
).
[PubMed]
16.
W.
Li
and
S.
Li
,
J. Chem. Phys.
121
,
6649
(
2004
).
17.
F.
Bessac
,
S.
Hoyau
, and
D.
Maynau
,
J. Chem. Phys.
123
,
104105
(
2005
).
18.
S.
Li
,
W.
Li
, and
T.
Fang
,
J. Am. Chem. Soc.
127
,
7215
(
2005
).
19.
M. A.
Collins
and
V. A.
Deev
,
J. Chem. Phys.
125
,
104104
(
2006
).
20.
F. R.
Manby
,
D.
Alfè
, and
M. J.
Gillan
,
Phys. Chem. Chem. Phys.
8
,
5178
(
2006
).
21.
N.
Flocke
and
R. J.
Bartlett
,
J. Chem. Phys.
121
,
10935
(
2004
).
22.
P.
Pulay
and
S.
Saebø
,
Theor. Chim. Acta
69
,
357
(
1986
);
S.
Saebø
and
P.
Pulay
,
Annu. Rev. Phys. Chem.
44
,
213
(
1993
);
S.
Saebø
and
P.
Pulay
,
J. Chem. Phys.
115
,
3975
(
2001
).
23.
M.
Schütz
,
G.
Hetzer
, and
H.-J.
Werner
,
J. Chem. Phys.
111
,
5691
(
1999
).
24.
P. E.
Maslen
and
M.
Head-Gordon
,
Chem. Phys. Lett.
283
,
102
(
1998
);
P. E.
Maslen
and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
7093
(
1998
);
M. S.
Lee
,
P. E.
Maslen
, and
M.
Head-Gordon
,
J. Chem. Phys.
112
,
3592
(
2000
).
25.
J. E.
Subotnik
and
M.
Head-Gordon
,
J. Chem. Phys.
122
,
034109
(
2005
);
J. E.
Subotnik
,
A.
Sodt
, and
M.
Head-Gordon
,
J. Chem. Phys.
125
,
074116
(
2006
).
[PubMed]
26.
C.
Hampel
and
H.-J.
Werner
,
J. Chem. Phys.
104
,
6286
(
1996
);
M.
Schütz
and
H.-J.
Werner
,
J. Chem. Phys.
114
,
661
(
2001
).
27.
S.
Li
,
J.
Ma
, and
Y.
Jiang
,
J. Comput. Chem.
23
,
237
(
2002
);
[PubMed]
S.
Li
,
J.
Shen
,
J.
Shen
,
W.
Li
, and
Y.
Jiang
,
J. Chem. Phys.
125
,
074109
(
2006
).
[PubMed]
28.
M.
Feyereisen
,
G.
Fitzgerald
, and
A.
Komornicki
,
Chem. Phys. Lett.
208
,
359
(
1993
).
29.
A. P.
Rendell
and
T. J.
Lee
,
J. Chem. Phys.
101
,
400
(
1994
).
30.
M.
Häser
and
J.
Almlöf
,
J. Chem. Phys.
96
,
489
(
1992
).
31.
M.
Häser
,
Theor. Chim. Acta
87
,
147
(
1993
).
32.
P. Y.
Ayala
and
G. E.
Scuseria
,
J. Chem. Phys.
110
,
3660
(
1999
).
33.
G. E.
Scuseria
and
P. Y.
Ayala
,
J. Chem. Phys.
111
,
8330
(
1999
).
34.
D. S.
Lambrecht
,
B.
Doser
, and
C.
Ochsenfeld
,
J. Chem. Phys.
123
,
184102
(
2005
).
35.
G.
Rauhut
and
P.
Pulay
,
Chem. Phys. Lett.
248
,
223
(
1996
).
36.
A. K.
Wilson
and
J.
Almlöf
,
Theor. Chim. Acta
95
,
49
(
1997
).
37.
H.-J.
Werner
,
F. R.
Manby
, and
P. J.
Knowles
,
J. Chem. Phys.
118
,
8149
(
2003
).
38.
M.
Schütz
and
F. R.
Manby
,
Phys. Chem. Chem. Phys.
5
,
3349
(
2003
).
39.
R. A.
DiStasio
,
Y.
Jung
, and
M.
Head-Gordon
,
J. Chem. Theory Comput.
1
,
862
(
2005
).
40.
T.
Nakajima
and
K.
Hirao
,
Chem. Phys. Lett.
427
,
225
(
2006
).
41.
M.
Kobayashi
,
T.
Akama
, and
H.
Nakai
,
J. Chem. Phys.
125
,
204106
(
2006
).
42.
P. R.
Surján
,
Chem. Phys. Lett.
406
,
318
(
2005
).
43.
M.
Kobayashi
and
H.
Nakai
,
Chem. Phys. Lett.
420
,
250
(
2006
).
44.
45.
R. S.
Mulliken
,
J. Chem. Phys.
23
,
1833
(
1955
).
46.
Y.
Kawamura
and
H.
Nakai
,
J. Comput. Chem.
25
,
1882
(
2004
);
[PubMed]
H.
Nakai
and
Y.
Kikuchi
,
J. Theor. Comput. Chem.
4
,
317
(
2005
);
Y.
Yamauchi
and
H.
Nakai
,
J. Chem. Phys.
123
,
034101
(
2005
);
T.
Baba
,
M.
Takeuchi
, and
H.
Nakai
,
Chem. Phys. Lett.
424
,
193
(
2006
);
Y.
Imamura
,
A.
Takahashi
, and
H.
Nakai
,
J. Chem. Phys.
126
,
034103
(
2007
);
[PubMed]
H.
Nakai
,
Y.
Kurabayashi
,
M.
Katouda
, and
T.
Atsumi
,
Chem. Phys. Lett.
438
,
132
(
2007
).
47.
H.
Sato
,
F.
Hirata
, and
S.
Sakaki
,
J. Phys. Chem. A
108
,
2097
(
2004
).
48.
H.
Nakai
and
K.
Sodeyama
,
Chem. Phys. Lett.
365
,
203
(
2002
);
H.
Nakai
and
K.
Sodeyama
,
J. Mol. Struct.: THEOCHEM
637
,
27
(
2003
);
Y.
Kawamura
and
H.
Nakai
,
Chem. Phys. Lett.
368
,
673
(
2003
);
H.
Nakai
,
M.
Katouda
, and
Y.
Kawamura
,
J. Chem. Phys.
121
,
4893
(
2004
);
[PubMed]
M.
Takeuchi
,
A.
Nakata
, and
H.
Nakai
,
Chem. Lett.
34
,
844
(
2005
);
Y.
Kawamura
and
H.
Nakai
,
Chem. Phys. Lett.
410
,
64
(
2005
);
H.
Nakai
and
Y.
Kikuchi
,
J. Comput. Chem.
27
,
917
(
2006
);
[PubMed]
T.
Baba
,
M.
Ishii
,
Y.
Kikuchi
, and
H.
Nakai
,
Chem. Lett.
36
,
616
(
2007
);
Y.
Shinzato
,
H.
Yukawa
,
M.
Morinaga
,
T.
Baba
, and
H.
Nakai
,
J. Alloys Compd.
(to be published).
49.
H.
Sato
and
S.
Sakaki
,
J. Phys. Chem. A
108
,
1629
(
2004
).
50.
P. Y.
Ayala
and
G. E.
Scuseria
,
Chem. Phys. Lett.
322
,
213
(
2000
).
51.
M. A.
Blanco
,
A. M.
Pendás
, and
E.
Francisco
,
J. Chem. Theory Comput.
1
,
1096
(
2005
).
52.
S. F.
Vyboishchikov
and
P.
Salvador
,
Chem. Phys. Lett.
430
,
204
(
2006
).
53.
R. K.
Nesbet
,
Adv. Chem. Phys.
14
,
1
(
1969
).
54.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
 et al,
J. Comput. Chem.
14
,
1347
(
1993
).
55.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
,
J. Chem. Phys.
56
,
2257
(
1972
).
56.

The CPU times of the all-electron DC-MP2 calculations, tAE, for (gly)5 and (gly)10 were 42.0 and 116.4min, respectively. On the other hand, those of the frozen-core DC-MP2 calculations, tFC, were 24.9 and 69.8min, respectively, and the ratios, tAEtFC, were 1.69 and 1.67. Since the ratios are nearly constant for (gly)5 and (gly)10, the discussions on the scaling of the DC-MP2 calculation would not change even in the all-electron calculations.

57.
P. C.
Hariharan
and
J. A.
Pople
,
Theor. Chim. Acta
28
,
213
(
1973
).
58.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
650
(
1980
).
59.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
You do not currently have access to this content.