An extended nonequilibrium molecular dynamics technique has been developed to investigate the transport properties of pressure-driven fluid flow in thin nanoporous membranes. Our simulation technique allows the simulation of the pressure-driven permeation of liquids through membranes while keeping a constant driving pressure using fluctuating walls. The flow of argon in the liquid state was simulated on applying an external pressure difference of 2.4×106Pa through the slitlike and cylindrical pores. The volume flux and velocity distribution in the membrane pores were examined as a function of pore size, along with the interaction with the pore walls, and these were compared with values estimated using the Hagen-Poiseuille flow. The calculated velocity strongly depends on the strength of the interaction between the fluid and the atoms in the wall when the pore size is approximately <20σ. The calculated volume flux also shows a dependence on the interaction between the fluid and the atoms in the wall. The Hagen-Poiseuille law overestimates or underestimates the flux depending on the interaction. From the analysis of calculated results, a good linear correlation between the density of the fluid in the membrane pores and the deviation of the flux estimated from the Hagen-Poiseuille flow was found. This suggests that the flux deviation in nanopore from the Hagen-Poiseuille flow can be predicted based on the fluid density in the pores.

1.
T.
Tsuru
,
T.
Shutou
,
S.
Nakao
, and
S.
Kimura
,
Sep. Sci. Technol.
29
,
971
(
1994
).
2.
R.
Rautenbach
and
A.
Groschl
,
Desalination
77
,
73
(
1990
).
3.
T.
Teorell
,
Prog. Biophys. Biophys. Chem.
3
,
305
(
1953
).
4.
K. H.
Meyer
and
J. F.
Sievers
,
Helv. Chim. Acta
19
,
987
(
1936
).
5.
T.
Tsuru
,
H.
Kondo
,
T.
Yoshioka
, and
M.
Asaeda
,
AIChE J.
50
,
1080
(
2004
).
6.
T.
Tsuru
,
M.
Miyawaki
,
H.
Kondo
,
T.
Yoshioka
, and
M.
Asaeda
,
Sep. Purif. Technol.
32
,
105
(
2003
).
7.
D.
Frenkel
and
S.
Berend
,
Understanding Molecular Simulation from Algorithms to Applications
(
Academic
,
San Diego, CA
,
1996
).
8.
J.-R.
Hill
,
L.
Subramanian
, and
A.
Maiti
,
Molecular Modeling Techniques in Materials Science
(
CRC
,
Boca Raton, FL
,
2005
).
9.
I.
Bitsanis
,
S. A.
Somers
,
H. T.
Davis
, and
M.
Tirrell
,
J. Chem. Phys.
93
,
3427
(
1990
).
10.
M.
Sun
and
C.
Ebner
,
Phys. Rev. A
46
,
4813
(
1992
).
11.
K. P.
Travis
and
K. E.
Gubbins
,
J. Chem. Phys.
112
,
1984
(
2000
).
12.
H.
Takaba
,
A.
Koyama
, and
S.
Nakao
,
J. Phys. Chem. B
104
,
6353
(
2000
).
13.
H.
Takaba
,
E.
Matsuda
,
B. N.
Nair
, and
S.
Nakao
,
J. Chem. Eng. Jpn.
3
,
1312
(
2002
).
14.
J. M. D.
Macelroy
,
J. Chem. Phys.
101
,
5274
(
1994
).
15.
R. F.
Cracknell
,
D.
Nicholson
, and
N.
Quirke
,
Phys. Rev. Lett.
74
,
2463
(
1995
).
16.
G. S.
Heffelfinger
and
F.
van Swol
,
J. Chem. Phys.
100
,
7548
(
1994
).
17.
H.
Takaba
,
E.
Matsuda
, and
S.
Nakao
,
J. Phys. Chem. B
108
,
14142
(
2004
).
18.
H. C.
Andersen
,
J. Chem. Phys.
72
,
2384
(
1980
).
19.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
Vangunsteren
,
A.
Dinola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
20.
M.
Lupkowski
and
F.
van Swol
,
J. Chem. Phys.
93
,
737
(
1990
).
21.
R. C.
Reid
,
J. M.
Prausnitz
, and
T. K.
Sherwood
,
The Properties of Gases and Liquids
(
McGraw-Hill
,
New York
,
1988
).
22.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
Oxford
,
1987
).
23.
J.
Delhommelle
and
D. J.
Evans
,
J. Chem. Phys.
114
,
6229
(
2001
).
24.
J.
Delhommelle
and
D. J.
Evans
,
J. Chem. Phys.
114
,
6236
(
2001
).
25.
S. P.
Sutera
,
Annu. Rev. Fluid Mech.
25
,
1
(
1993
).
26.
S.
Hess
and
D. J.
Evans
,
Phys. Rev. E
64
,
011207
(
2001
).
You do not currently have access to this content.