Classical nucleation theory pictures the homogeneous nucleation of a crystal as the formation of a spherical crystalline embryo, possessing the properties of the macroscopic crystal, inside a parent supercooled liquid. In this work we study crystal nucleation in moderately supercooled sulfur hexafluoride by umbrella sampling simulations. The nucleation free energy evolves from 5.2kBT at T=170K to 39.1kBT at T=195K. The corresponding critical nucleus size ranges from 40molecules at T=170Kto266molecules at T=195K. Both nucleation free energy and critical nucleus size are shown to evolve with temperature according to the equations derived from the classical nucleation theory. Inspecting the obtained nuclei we show, however, that they present quite anisotropic shapes in opposition to the spherical assumption of the theory. Moreover, even though the critical nuclei possess the structure of the stable bcc plastic phase, the only mechanically stable crystal phase for SF6 in the temperature range investigated, they are shown to be less ordered than the corresponding macroscopic crystal. Their crystalline order is nevertheless shown to increase regularly with their size. This is confirmed by a study of a nucleus growth from a critical size to a size of the order of 104molecules. Similarly to the fact that it does not affect the temperature dependence of the nucleation free energy and of the critical nucleus size, the ordering of the nucleus with size does not affect the growth rate of the nucleus.

1.
U.
Gasser
,
E. R.
Weeks
,
A.
Schofield
,
P. N.
Pusey
, and
D. A.
Weitz
,
Science
292
,
258
(
2001
).
2.
J. L.
Harland
,
S. I.
Henderson
,
S. M.
Underwood
, and
W.
van Megen
,
Phys. Rev. Lett.
75
,
3572
(
1995
).
3.
J. L.
Harland
and
W.
van Megen
,
Phys. Rev. E
55
,
3054
(
1997
).
4.
S. T.
Yau
and
P. G.
Vekilov
,
Nature (London)
406
,
494
(
2000
).
5.
I.
Saika-Voivod
,
P. H.
Poole
, and
R. K.
Bowles
,
J. Chem. Phys.
124
,
224709
(
2006
).
6.
J.-M.
Leyssale
,
J.
Delhommelle
, and
C.
Millot
,
J. Chem. Phys.
122
,
184518
(
2005
).
7.
J. D.
Honeycutt
and
H. C.
Andersen
,
Chem. Phys. Lett.
108
,
535
(
1984
).
8.
B. J.
Alder
and
T. E.
Wainwright
,
J. Chem. Phys.
33
,
1439
(
1960
).
9.
M. J.
Mandell
,
J. P.
McTague
, and
A.
Rahman
,
J. Chem. Phys.
64
,
3699
(
1976
).
10.
J. N.
Cape
,
J. L.
Finney
, and
L. V.
Woodcock
,
J. Chem. Phys.
75
,
2366
(
1981
).
11.
R. D.
Mountain
and
P. K.
Basu
,
J. Chem. Phys.
78
,
7318
(
1983
).
12.
C. S.
Hsu
and
A.
Rahman
,
J. Chem. Phys.
70
,
5234
(
1979
).
13.
C. S.
Hsu
and
A.
Rahman
,
J. Chem. Phys.
71
,
4974
(
1979
).
14.
R. D.
Mountain
and
A. C.
Brown
,
J. Chem. Phys.
80
,
2730
(
1984
).
15.
M.
Tanemura
,
Y.
Hiwatari
,
H.
Matsuda
,
T.
Ogawa
,
N.
Ogita
, and
A.
Ueda
,
Prog. Theor. Phys.
58
,
1079
(
1977
).
16.
W. C.
Swope
and
H. C.
Andersen
,
Phys. Rev. B
41
,
7042
(
1990
).
17.
M. J.
Mandell
,
J. P.
McTague
, and
A.
Rahman
,
J. Chem. Phys.
66
,
3070
(
1977
).
18.
F. F.
Abraham
,
J. Chem. Phys.
72
,
359
(
1980
).
19.
S.
Nosé
and
F.
Yonezawa
,
J. Chem. Phys.
84
,
1803
(
1986
).
20.
J.
Yang
,
H.
Gould
, and
W.
Klein
,
Phys. Rev. Lett.
60
,
2665
(
1988
).
21.
M.
Matsumoto
,
S.
Saito
, and
I.
Ohmine
,
Nature (London)
416
,
409
(
2002
).
22.
I. M.
Svishchev
and
P. G.
Kusalik
,
Phys. Rev. Lett.
75
,
3289
(
1995
).
23.
B.
O’Malley
and
I.
Snook
,
Phys. Rev. Lett.
90
,
085702
(
2003
).
24.
J. S.
van Duijneveldt
and
D.
Frenkel
,
J. Chem. Phys.
96
,
4655
(
1992
).
25.
A. C.
Pan
and
D.
Chandler
,
J. Phys. Chem. B
108
,
19681
(
2004
).
26.
D.
Moroni
,
P. R.
ten Wolde
, and
P. G.
Bolhuis
,
Phys. Rev. Lett.
94
,
235703
(
2005
).
27.
F.
Trudu
,
D.
Donadio
, and
M.
Parrinello
,
Phys. Rev. Lett.
97
,
105701
(
2006
).
28.
M.
Chopra
,
M.
Muller
, and
J. J.
de Pablo
,
J. Phys. Chem.
124
,
134102
(
2006
).
29.
M.
Muller
and
J. J.
de Pablo
,
703
,
67
(
2006
).
30.
P. R.
ten Wolde
,
M. J.
Ruiz-Montero
, and
D.
Frenkel
,
Phys. Rev. Lett.
75
,
2714
(
1995
).
31.
P. R.
ten Wolde
,
M. J.
Ruiz-Montero
, and
D.
Frenkel
,
J. Chem. Phys.
104
,
9932
(
1996
).
32.
P. R.
ten Wolde
and
D.
Frenkel
,
Science
277
,
1975
(
1997
).
33.
S.
Auer
and
D.
Frenkel
,
Nature (London)
409
,
1020
(
2001
).
34.
S.
Auer
and
D.
Frenkel
,
Nature (London)
413
,
711
(
2001
).
35.
S.
Auer
and
D.
Frenkel
,
J. Chem. Phys.
120
,
3015
(
2004
).
36.
C.
Desgranges
and
J.
Delhommelle
,
J. Am. Chem. Soc.
128
,
10368
(
2006
).
37.
C.
Desgranges
and
J.
Delhommelle
,
J. Am. Chem. Soc.
128
,
15104
(
2006
).
38.
C.
Desgranges
and
J.
Delhommelle
,
J. Phys. Chem. B
111
,
1465
(
2007
).
39.
C.
Desgranges
and
J.
Delhommelle
,
J. Chem. Phys.
126
,
054501
(
2007
).
40.
T.
Schilling
and
D.
Frenkel
,
Phys. Rev. Lett.
92
,
085505
(
2004
).
41.
C.
Valeriani
,
E.
Sanz
, and
D.
Frenkel
,
J. Chem. Phys.
122
,
194501
(
2005
).
42.
R.
Radhakrishnan
and
B. L.
Trout
,
J. Am. Chem. Soc.
125
,
7743
(
2003
).
43.
J.-M.
Leyssale
,
J.
Delhommelle
, and
C.
Millot
,
Chem. Phys. Lett.
375
,
612
(
2003
).
44.
J.-M.
Leyssale
,
J.
Delhommelle
, and
C.
Millot
,
J. Am. Chem. Soc.
126
,
12286
(
2004
).
45.
J.-M.
Leyssale
,
J.
Delhommelle
, and
C.
Millot
,
J. Chem. Phys.
122
,
104510
(
2005
).
46.
B.
Mutaftschiev
,
The Atomistic Nature of Crystal Growth
(
Springer
,
Berlin
,
2001
).
47.
W.
Ostwald
,
Z. Phys. Chem., Stoechiom. Verwandtschaftsl.
22
,
289
(
1897
).
48.
C. S.
Yoo
,
V.
Iota
, and
H.
Cynn
,
Bull. Am. Phys. Soc.
48
,
914
(
2003
).
49.
C.
Stoica
,
P.
Tinnemans
,
H.
Meekes
, and
E.
Vileg
,
Cryst. Growth Des.
5
,
975
(
2003
).
50.
S.
Chen
,
H.
Xi
, and
L.
Yu
,
J. Am. Chem. Soc.
127
,
17439
(
2005
).
51.
J.
Tao
and
L.
Yu
,
J. Phys. Chem. B
110
,
7098
(
2006
).
52.
J.
Huang
,
S.
Chen
,
I. A.
Guzei
, and
L.
Yu
,
J. Am. Chem. Soc.
128
,
11985
(
2006
).
53.
X.
Bai
and
M.
Li
,
J. Chem. Phys.
122
,
224510
(
2005
).
54.
M. T.
Dove
,
B. M.
Powell
,
G. S.
Pawley
, and
L. S.
Bartell
,
Mol. Phys.
65
,
353
(
1988
).
55.
J. K.
Cockcroft
and
A. N.
Fitch
,
Z. Kristallogr.
184
,
123
(
1988
).
56.
57.
B. M.
Powell
,
M. T.
Dove
,
G. S.
Pawley
, and
L. S.
Bartell
,
Mol. Phys.
62
,
1127
(
1987
).
58.
A. H.
Fuchs
and
G. S.
Pawley
,
J. Phys. (France)
49
,
41
(
1988
).
59.
A.
Boutin
,
B.
Rousseau
, and
A. H.
Fuchs
,
Chem. Phys. Lett.
218
,
122
(
1994
).
60.
G.
Torchet
,
M.-F.
de Feraudy
,
B.
Raoult
,
J.
Farges
,
A. H.
Fuchs
, and
G. S.
Pawley
,
J. Chem. Phys.
92
,
6768
(
1990
).
61.
F. M.
Bénière
,
A.
Boutin
,
J.-M.
Simon
,
A. H.
Fuchs
,
M.-F.
de Feraudy
, and
G.
Torchet
,
J. Phys. Chem.
97
,
10472
(
1993
).
62.
A.
Boutin
and
A. H.
Fuchs
,
J. Chem. Phys.
98
,
3290
(
1993
).
63.
A.
Boutin
,
J. M.
Simon
, and
A. H.
Fuchs
,
Mol. Phys.
81
,
1165
(
1994
).
64.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
Oxford
,
1987
).
65.
D. J.
Evans
and
G. P.
Morriss
,
Statistical Mechanics of Nonequilibrium Liquids
(
Academic
,
London
,
1990
).
66.
P. J.
Daivis
and
D. J.
Evans
,
J. Chem. Phys.
100
,
541
(
1994
).
67.
G. M.
Torrie
and
J. P.
Valleau
,
Chem. Phys. Lett.
28
,
578
(
1974
).
68.
G. M.
Torrie
and
J. P.
Valleau
,
J. Comput. Phys.
23
,
187
(
1977
).
69.
P. J.
Steinhardt
,
D. R.
Nelson
, and
M.
Ronchetti
,
Phys. Rev. B
28
,
784
(
1983
).
70.
P. R.
ten Wolde
,
M. J.
Ruiz-Montero
, and
D.
Frenkel
,
Faraday Discuss.
104
,
93
(
1996
).
You do not currently have access to this content.