Quantum mechanical close-coupling calculations have been used to obtain fully quantum state-resolved differential cross sections and opacity functions for the rotationally inelastic collisions of NO(XΠ2) with He at collision energies of 63 and 147meV using the most recent ab initio potential energy surfaces of Kłos et al. [J. Chem. Phys.112, 2195 (2000)]. Double peaks observed in the Λ-doublet resolved differential cross sections are shown to be related to the presence of analogous peaks in the corresponding opacity functions. These structures can be linked directly to a specific expansion term in the potential, and reflect the fact that NO is not quite homonuclear.

1.
K. T.
Lorenz
,
D. W.
Chandler
,
J. W.
Barr
,
W.
Chen
,
G. L.
Barnes
, and
J. I.
Cline
,
Science
293
,
2063
(
2001
).
2.
H.
Kohguchi
,
T.
Suzuki
, and
M. H.
Alexander
,
Science
294
,
832
(
2001
).
3.
A.
Degli-Esposti
,
A.
Berning
, and
H.-J.
Werner
,
J. Chem. Phys.
103
,
2067
(
1995
).
4.
M.
Yang
and
M. H.
Alexander
,
J. Chem. Phys.
103
,
6973
(
1995
).
5.
B.
Nizamov
,
P. J.
Dagdigian
, and
M. H.
Alexander
,
J. Chem. Phys.
115
,
8393
(
2001
).
6.
M.
de Lange
,
S.
Stolte
,
C. A.
Taatjes
,
J.
Kłos
,
G. C.
Groenenboom
, and
A.
van der Avoird
,
J. Chem. Phys.
121
,
11691
(
2004
).
7.
J. J.
Gilijamse
,
S.
Hoekstra
,
S. Y. T.
van Meerakker
,
G. C.
Groenenboom
, and
G.
Meijer
,
Science
313
,
1617
(
2006
).
8.
M. C.
van Beek
,
J. J.
ter Meulen
, and
M. H.
Alexander
,
J. Chem. Phys.
113
,
628
(
2000
).
9.
A.
Gijsbertsen
,
H.
Linnartz
,
G.
Rus
,
A. E.
Wiskerke
,
S.
Stolte
,
D. W.
Chandler
, and
J.
Kłos
,
J. Chem. Phys.
123
,
224305
(
2005
).
10.

We label the Λ-doublet levels e or f according to whether the index ϵ is +1 or 1, respectively (Ref. 14).

11.
A.
Gijsbertsen
,
H.
Linnartz
,
C. A.
Taatjes
, and
S.
Stolte
,
J. Am. Chem. Soc.
128
,
8777
(
2006
).
12.
M. H.
Alexander
,
J. Chem. Phys.
76
,
5974
(
1982
).
13.

Equations (1) and (2) implicitly assume that the NO internuclear distance r is frozen at its equilibrium value.

14.
P. J.
Dagdigian
,
M. H.
Alexander
, and
K.
Liu
,
J. Chem. Phys.
91
,
839
(
1989
).
15.
J.
Kłos
,
G.
Chałasiński
,
M. T.
Berry
,
R.
Bukowski
, and
S. M.
Cybulski
,
J. Chem. Phys.
112
,
2195
(
2000
).
16.
M. H.
Alexander
and
D. E.
Manolopoulos
,
J. Chem. Phys.
86
,
2044
(
1987
).
17.
M. H.
Alexander
,
D. E.
Manolopoulos
,
H.-J.
Werner
 et al., HIBRIDON package of programs.
18.
J.
Kłos
,
F. J.
Aoiz
,
J. E.
Verdasco
,
M.
Brouard
,
S.
Marinakis
, and
S.
Stolte
(unpublished).
19.
M.
Drabbels
,
A. M.
Wodtke
,
M.
Yang
, and
M. H.
Alexander
,
J. Phys. Chem. A
101
,
6463
(
1997
).
20.
M. H.
Alexander
,
Faraday Discuss.
113
,
437
(
1999
).
21.
M. S.
Westley
,
K. T.
Lorenz
,
D. W.
Chandler
, and
P. L.
Houston
,
J. Chem. Phys.
114
,
2669
(
2001
).
22.
R. N.
Dixon
and
D.
Field
,
Proc. R. Soc. London, Ser. A
368
,
99
(
1979
).
23.
M. H.
Alexander
,
J. Chem. Phys.
64
,
4498
(
1976
).
24.

Because upward virtual transitions to level j involve either fewer steps or steps coupled by lower (and generally larger) potential expansion terms than downward virtual transitions into j, the V10 term seems to induce upward virtual transitions more strongly than downward ones.

25.
J.
Kłos
,
F. J.
Aoiz
, and
J. E.
Verdasco
(unpublished).
You do not currently have access to this content.