A predictive group-contribution statistical associating fluid theory (SAFT-γ) is developed by extending the molecular-based SAFT-VR equation of state [A. Gil-Villegas et al J. Chem. Phys.106, 4168 (1997)] to treat heteronuclear molecules which are formed from fused segments of different types. Our models are thus a heteronuclear generalization of the standard models used within SAFT, comparable to the optimized potentials for the liquid state OPLS models commonly used in molecular simulation; an advantage of our SAFT-γ over simulation is that an algebraic description for the thermodynamic properties of the model molecules can be developed. In our SAFT-γ approach, each functional group in the molecule is modeled as a united-atom spherical (square-well) segment. The different groups are thus characterized by size (diameter), energy (well depth) and range parameters representing the dispersive interaction, and by shape factor parameters (which denote the extent to which each group contributes to the overall molecular properties). For associating groups a number of bonding sites are included on the segment: in this case the site types, the number of sites of each type, and the appropriate association energy and range parameters also have to be specified. A number of chemical families (n-alkanes, branched alkanes, n-alkylbenzenes, mono- and diunsaturated hydrocarbons, and n-alkan-1-ols) are treated in order to assess the quality of the SAFT-γ description of the vapor-liquid equilibria and to estimate the parameters of various functional groups. The group parameters for the functional groups present in these compounds (CH3, CH2, CH3CH, ACH, ACCH2, CH2, CH, and OH) together with the unlike energy parameters between groups of different types are obtained from an optimal description of the pure component phase equilibria. The approach is found to describe accurately the vapor-liquid equilibria with an overall %AAD of 3.60% for the vapor pressure and 0.86% for the saturated liquid density. The fluid phase equilibria of some larger compounds comprising these groups, which are not included in the optimization database and some binary mixtures are examined to confirm the predictive capability of the SAFT-γ approach. A key advantage of our method is that the binary interaction parameters between groups can be estimated directly from an examination of pure components alone. This means that as a first approximation the fluid-phase equilibria of mixtures of compounds comprising the groups considered can be predicted without the need for any adjustment of the binary interaction parameters (which is common in other approaches). The special case of molecular models comprising tangentially bonded (all-atom and united-atom) segments is considered separately; we comment on the adequacy of such models in representing the properties of real molecules.

1.
R.
Gani
and
J. P.
O’Connell
,
Comput. Chem. Eng.
25
,
3
(
2001
).
2.
K. G.
Joback
and
R. C.
Reid
,
Chem. Eng. Commun.
57
,
233
(
1987
).
3.
L.
Constantinou
and
R.
Gani
,
AIChE J.
40
,
1697
(
1994
).
4.
L.
Constantinou
,
R.
Gani
, and
J. P.
O’Connell
,
Fluid Phase Equilib.
103
,
11
(
1995
).
5.
B. E.
Poling
,
J. M.
Prausnitz
, and
J. P.
O’Connell
,
The Properties of Gases and Liquids
(
McGraw Hill
,
New York
,
2001
).
6.
E. A.
Guggenheim
,
Mixtures
(
Clarendon
,
Oxford
,
1952
).
7.
D. S.
Abrams
and
J. M.
Prausnitz
,
AIChE J.
21
,
116
(
1975
).
8.
A.
Fredenslund
,
R. L.
Jones
, and
J. M.
Prausnitz
,
AIChE J.
21
,
1086
(
1975
).
9.
A.
Fredenslund
,
J.
Gmehling
, and
P.
Rasmussen
,
Vapor-liquid Equilibria Using UNIFAC
(
Elsevier
,
New York
,
1977
).
10.
The UNIFAC Consortium,
University of Oldenburg
, 2007 (http://134.106.215.86/UNIFAC).
11.
O.
Redlich
,
E. L.
Derr
, and
G. J.
Pierotti
,
J. Am. Chem. Soc.
81
,
2283
(
1959
).
12.
M. N.
Papadopoulos
and
E. L.
Derr
,
J. Am. Chem. Soc.
81
,
2285
(
1959
).
13.
G. M.
Wilson
and
C. H.
Deal
,
Ind. Eng. Chem. Fundam.
1
,
20
(
1962
).
14.
G. M.
Wilson
,
J. Am. Chem. Soc.
86
,
127
(
1964
).
15.
J.
Gmehling
,
J. D.
Li
, and
M.
Schiller
,
Ind. Eng. Chem. Fundam.
32
,
178
(
1993
).
16.
T. H.
Nguyen
and
G. A.
Ratcliff
,
Can. J. Chem. Eng.
52
,
641
(
1974
).
17.
F. A.
Ashraf
and
J. H.
Vera
,
Fluid Phase Equilib.
4
,
211
(
1980
).
18.
I.
Nagata
and
J.
Koyabu
,
Thermochim. Acta
48
,
187
(
1981
).
19.
H. V.
Kehiaian
,
Fluid Phase Equilib.
13
,
243
(
1983
).
20.
A.
Fredenslund
and
P.
Rasmussen
,
Fluid Phase Equilib.
24
,
115
(
1985
).
21.
J. A.
Abusleme
and
J. H.
Vera
,
Fluid Phase Equilib.
22
,
123
(
1985
).
22.
J.
Gmehling
,
Fluid Phase Equilib.
30
,
119
(
1986
).
23.
T.
Holderbaum
and
J.
Gmehling
,
Fluid Phase Equilib.
70
,
251
(
1991
).
24.
G.
Soave
,
Chem. Eng. Sci.
27
,
1197
(
1972
).
25.
S.
Skjold-Jørgensen
,
Fluid Phase Equilib.
16
,
317
(
1984
).
26.
N. F.
Carnahan
and
K. E.
Starling
,
J. Chem. Phys.
51
,
635
(
1969
).
27.
S.
Skjold-Jørgensen
,
Ind. Eng. Chem. Res.
27
,
110
(
1988
).
28.
H. P.
Gros
,
S.
Bottini
, and
E. A.
Brignole
,
Fluid Phase Equilib.
116
,
537
(
1996
).
29.
S.
Espinosa
,
G. M.
Foco
,
A.
Bermudez
, and
T.
Fornari
,
Fluid Phase Equilib.
172
,
129
(
2000
).
30.
S.
Espinosa
,
T.
Fornari
,
S. B.
Bottini
, and
E. A.
Brignole
,
J. Supercrit. Fluids
23
,
91
(
2002
).
31.
P. A.
Gupte
,
P.
Rasmussen
, and
A.
Fredenslund
,
Ind. Eng. Chem. Fundam.
25
,
636
(
1986
).
32.
S.
Dahl
and
M. L.
Michelsen
,
AIChE J.
36
,
1829
(
1990
).
33.
S.
Dahl
,
A.
Fredenslund
, and
P.
Rasmussen
,
Ind. Eng. Chem. Res.
30
,
1936
(
1991
).
34.
C.
Boukouvalas
,
N.
Spiliotis
,
P.
Coutsikos
,
N.
Tzouvaras
, and
D.
Tassios
,
Fluid Phase Equilib.
92
,
75
(
1994
).
35.
C.
Lermitte
and
J.
Vidal
,
Fluid Phase Equilib.
72
,
111
(
1992
).
36.
H.
Orbey
,
S. I.
Sandler
, and
D. S. H.
Wong
,
Fluid Phase Equilib.
85
,
41
(
1993
).
37.
A. I.
Majeed
and
J.
Wagner
,
ACS Symp. Ser.
300
,
452
(
1986
).
38.
G. K.
Georgeton
and
A. S.
Teja
,
Ind. Eng. Chem. Res.
27
,
657
(
1988
).
39.
C. H.
Kim
,
P.
Vimalchand
,
M. D.
Donohue
, and
S. I.
Sandler
,
AIChE J.
32
,
1726
(
1986
).
40.
M. S.
High
and
R. P.
Danner
,
Fluid Phase Equilib.
53
,
323
(
1989
).
41.
C.
Panayiotou
and
J. H.
Vera
,
Polym. J. (Tokyo, Jpn.)
14
,
681
(
1982
).
42.
J. D.
Pults
,
R. A.
Greenkorn
, and
K. C.
Chao
,
Chem. Eng. Sci.
44
,
2553
(
1989
).
43.
O.
Redlich
and
J. N. S.
Kwong
,
Chem. Rev. (Washington, D.C.)
44
,
233
(
1949
).
44.
D. Y.
Peng
and
D. B.
Robinson
,
Ind. Eng. Chem. Fundam.
15
,
59
(
1976
).
45.
L.
Coniglio
,
E.
Rauzy
, and
C.
Berro
,
Fluid Phase Equilib.
87
,
53
(
1993
).
46.
L.
Coniglio
,
L.
Trassy
, and
E.
Rauzy
,
Ind. Eng. Chem. Res.
39
,
5037
(
2000
).
47.
N.
Elvassore
,
A.
Bertucco
, and
M.
Fermeglia
,
AIChE J.
48
,
359
(
2002
).
48.
J. R.
Elliott
, Jr.
, and
R. N.
Natarajan
,
Ind. Eng. Chem. Res.
41
,
1043
(
2002
).
49.
J. N.
Jaubert
and
F.
Mutelet
,
Fluid Phase Equilib.
224
,
285
(
2004
).
50.
M.
Lora
,
F.
Rindfleisch
, and
M. A.
McHugh
,
J. Appl. Polym. Sci.
73
,
1979
(
1999
).
51.
J.
Vijande
,
M. M.
Piñeiro
,
D.
Bessieres
,
H.
Saint-Guirons
, and
J. L.
Legido
,
Phys. Chem. Chem. Phys.
6
,
766
(
2004
).
52.
S.
Tamouza
,
J. P.
Passarelo
,
P.
Tobaly
, and
J. C.
de Hemptinne
,
Fluid Phase Equilib.
222
,
67
(
2004
).
53.
S.
Tamouza
,
J. P.
Passarelo
,
P.
Tobaly
, and
J. C.
de Hemptinne
,
Fluid Phase Equilib.
228
,
409
(
2005
).
54.
T. X. N.
Thi
,
S.
Tamouza
,
P.
Tobaly
,
J. P.
Passarelo
, and
J. C.
de Hemptinne
,
Fluid Phase Equilib.
238
,
254
(
2005
).
55.
C.
Le Thi
,
S.
Tamouza
,
J. P.
Passarello
,
P.
Tobaly
, and
J. C.
de Hemptinne
,
Ind. Eng. Chem. Res.
45
,
6803
(
2006
).
56.
W. G.
Chapman
,
K. E.
Gubbins
,
G.
Jackson
, and
M.
Radosz
,
Fluid Phase Equilib.
52
,
31
(
1989
).
57.
W. G.
Chapman
,
K. E.
Gubbins
,
G.
Jackson
, and
M.
Radosz
,
Ind. Eng. Chem. Res.
29
,
1709
(
1990
).
58.
M. S.
Wertheim
,
J. Stat. Phys.
35
,
19
(
1984
).
59.
M. S.
Wertheim
,
J. Stat. Phys.
35
,
35
(
1984
).
60.
M. S.
Wertheim
,
J. Stat. Phys.
42
,
459
(
1986
).
61.
M. S.
Wertheim
,
J. Stat. Phys.
42
,
477
(
1986
).
62.
G.
Jackson
,
W. G.
Chapman
, and
K. E.
Gubbins
,
Mol. Phys.
65
,
1
(
1988
).
63.
W. G.
Chapman
,
G.
Jackson
, and
K. E.
Gubbins
,
Mol. Phys.
65
,
1057
(
1988
).
64.
A.
Galindo
,
S. J.
Burton
,
G.
Jackson
,
D. P.
Visco
, and
D.
Kofke
,
Mol. Phys.
100
,
2241
(
2002
).
65.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
, 3rd ed. (
Academic
,
New York
,
2006
).
66.
E. A.
Müller
, and
K. E.
Gubbins
,
A Review of SAFT and Related Approaches in Equations of State for Fluids and Fluid Mixtures
, edited by
J. V.
Sengers
,
R. F.
Kayser
,
C. J.
Peters
, and
H. J.
White
, Jr.
(
Elsevier
,
Amsterdam
1988
), Part 2.
67.
E. A.
Müller
and
K. E.
Gubbins
,
Ind. Eng. Chem. Res.
40
,
2193
(
2001
).
68.
I. G.
Economou
,
Ind. Eng. Chem. Res.
41
,
953
(
2002
).
69.
J.
Gross
and
G.
Sadowski
,
Ind. Eng. Chem. Res.
40
,
1244
(
2001
).
70.
A.
Gil-Villegas
,
A.
Galindo
,
P. J.
Whitehead
,
S. J.
Mills
,
G.
Jackson
, and
A. N.
Burgess
,
J. Chem. Phys.
106
,
4168
(
1997
).
71.
A.
Galindo
,
P. J.
Whitehead
,
G.
Jackson
, and
A. N.
Burgess
,
J. Phys. Chem.
100
,
6781
(
1996
).
72.
A. L.
Archer
,
M. D.
Amos
,
G.
Jackson
, and
I. A.
McLure
,
Int. J. Thermophys.
17
,
201
(
1996
).
73.
P. J.
Clements
,
S.
Zafar
,
A.
Galindo
,
G.
Jackson
, and
I. A.
McLure
,
J. Chem. Soc., Faraday Trans.
93
,
1331
(
1997
).
74.
M. N.
García-Lisbona
,
A.
Galindo
,
G.
Jackson
, and
A. N.
Burgess
,
Mol. Phys.
93
,
57
(
1998
).
75.
M. N.
García-Lisbona
,
A.
Galindo
,
G.
Jackson
, and
A. N.
Burgess
,
J. Am. Chem. Soc.
120
,
4191
(
1998
).
76.
M.
Banaszak
,
C. K.
Chen
, and
M.
Radosz
,
Macromolecules
29
,
6481
(
1996
).
77.
C. K.
Chen
,
M.
Banaszak
, and
M.
Radosz
,
J. Phys. Chem.
102
,
2427
(
1998
).
78.
H.
Adidharma
and
M.
Radosz
,
Ind. Eng. Chem. Res.
37
,
4453
(
1998
).
79.
T.
Schlick
,
Molecular Modeling and Simulation: An Interdisciplinary Guide Interdisciplinary Applied Mathematics
(
Springer-Verlag
,
New York, NY
,
1988
).
80.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
118
,
11225
(
1996
).
81.
W. L.
Jorgensen
and
J.
Tirado-Rives
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
6665
(
2005
).
82.
N. L.
Allinger
,
J. Am. Chem. Soc.
99
,
8127
(
1977
).
83.
D. A.
Pearlman
,
D. A.
Case
,
J. W.
Caldwell
, and
W. S.
Ross
,
Comput. Phys. Commun.
91
,
1
(
1995
).
84.
B. R.
Brooks
,
R. E.
Bruccoleri
,
B. D.
Olafson
,
D. J.
States
,
S.
Swaminathan
, and
M.
Karplus
,
J. Comput. Chem.
4
,
187
(
1983
).
85.
W. R. P
Scott
,
P. H.
Hunenberger
,
I. G.
Tironi
,
A. E.
Mark
,
S. R.
Billeter
,
J.
Fennen
,
A. E.
Torda
,
T.
Huber
,
P.
Kruger
, and
W. F.
Van Gunsteren
,
J. Phys. Chem. A
103
,
3596
(
1999
).
86.
A.
Klamt
,
J. Phys. Chem.
99
,
2224
(
1995
).
87.
A.
Klamt
,
V.
Jonas
,
T.
Burger
, and
J. C. W.
Lohrenz
,
J. Phys. Chem.
102
,
5074
(
1998
).
88.
A.
Klamt
and
F.
Eckert
,
Fluid Phase Equilib.
172
,
43
(
2000
).
89.
A.
Klamt
and
G.
Schuurmann
,
J. Chem. Soc., Perkin Trans. 2
2
,
799
(
1993
).
90.
O.
Spuhl
and
W.
Arlt
,
Ind. Eng. Chem. Res.
43
,
852
(
2004
).
91.
W.
Arlt
,
O.
Spuhl
, and
A.
Klamt
,
Chem. Eng. Process.
43
,
221
(
2004
).
92.
J. P.
Wolbach
and
S. I.
Sandler
,
Ind. Eng. Chem. Res.
36
,
4041
(
1997
).
93.
T. J.
Sheldon
,
B.
Giner
,
C. S.
Adjiman
,
A.
Galindo
,
G.
Jackson
,
D.
Jacquemin
,
V.
Wathelet
, and
E. A.
Perpète
,
Computer-Aided Chemical Engineering 22: Multiscale Modeling of Polymer Properties
, edited by
M.
Laso
and
E. A.
Perpète
(
Elsevier
,
Amsterdam
,
2006
), Part I, Chap. 7.
94.
A. L.
Archer
and
G.
Jackson
,
Mol. Phys.
73
,
881
(
1991
).
95.
M. D.
Amos
and
G.
Jackson
,
Mol. Phys.
74
,
191
(
1991
).
96.
M. D.
Amos
and
G.
Jackson
,
J. Chem. Phys.
96
,
4604
(
1992
).
97.
R. P.
Sear
,
M. D.
Amos
, and
G.
Jackson
,
Mol. Phys.
80
,
777
(
1993
).
98.
R. P.
Sear
and
G.
Jackson
,
Mol. Phys.
81
,
801
(
1994
).
99.
C.
McCabe
,
A.
Gil-Villegas
,
G.
Jackson
, and
F.
del Río
,
Mol. Phys.
97
,
551
(
1999
).
100.
Y.
Peng
,
H.
Zhao
, and
C.
McCabe
,
Mol. Phys.
104
,
571
(
2006
).
101.
H.
Adidharma
and
M.
Radosz
,
Fluid Phase Equilib.
158
,
165
(
1999
).
102.
P.
Morgado
,
H.
Zhao
,
F. J.
Blas
,
C.
McCabe
,
L. P. N.
Rebelo
, and
E. J. M.
Filipe
,
J. Phys. Chem.
111
,
2856
(
2007
).
103.
F. J.
Blas
and
L. F.
Vega
,
Mol. Phys.
92
,
135
(
1997
).
104.
J.
Gross
,
O.
Spuhl
,
F.
Tumakaka
, and
G.
Sadowski
,
Ind. Eng. Chem. Res.
42
,
1266
(
2003
).
105.
M.
Banaszak
and
M.
Radosz
,
Fluid Phase Equilib.
193
,
179
(
2002
).
106.
L. A.
Davies
,
A.
Gil-Villegas
, and
G.
Jackson
,
J. Chem. Phys.
111
,
8659
(
1999
).
107.
M. S.
Wertheim
,
J. Chem. Phys.
87
,
7323
(
1987
).
108.
T.
Boublík
,
Mol. Phys.
68
,
191
(
1989
).
109.
T.
Boublík
,
C.
Vega
, and
M.
Diaz-Peña
,
J. Chem. Phys.
93
,
730
(
1990
).
110.
W.
Bol
,
Mol. Phys.
45
,
605
(
1982
).
111.
I.
Nezbeda
,
J. Mol. Liq.
73
,
317
(
1997
).
112.
A.
Lymperiadis
, Ph.D. thesis,
Imperial College
, London,
2008
.
113.
A.
Galindo
,
L. A.
Davies
,
A.
Gil-Villegas
, and
G.
Jackson
,
Mol. Phys.
93
,
241
(
1998
).
114.
L. L.
Lee
,
Molecular Thermodynamics of Nonideal Fluids
(
Butterworth
,
Boston
,
1988
).
115.
J. A.
Barker
and
D.
Henderson
,
Rev. Mod. Phys.
48
,
587
(
1976
).
116.
T.
Boublík
,
J. Chem. Phys.
53
,
471
(
1970
).
117.
G. A.
Mansoori
,
N. F.
Carnahan
,
K. E.
Starling
, and
T. W.
Leland
,
J. Chem. Phys.
54
,
1523
(
1971
).
118.
J. A.
Barker
and
D.
Henderson
,
J. Chem. Phys.
47
,
2856
(
1967
).
119.
J. A.
Barker
and
D.
Henderson
,
J. Chem. Phys.
47
,
4714
(
1967
).
120.
Y. Q.
Zhou
and
G.
Stell
,
J. Chem. Phys.
96
,
1507
(
1992
).
121.
Y. Q.
Zhou
,
C. K.
Hall
, and
G.
Stell
,
J. Chem. Phys.
103
,
2688
(
1995
).
122.
G. N. I.
Clark
,
A. J.
Haslam
,
A.
Galindo
, and
G.
Jackson
,
Mol. Phys.
104
,
3561
(
2006
).
123.
B. D.
Smith
and
R.
Srivastava
,
Thermodynamic Data for Pure Compounds: Part A Hydrocarbons and Ketones
(
Elsevier
,
Amsterdam
,
1986
).
124.
B. D.
Smith
and
R.
Srivastava
,
Thermodynamic Data for Pure Compounds: Part B Halogenated Hydrocarbons and Alcohols
(
Elsevier
,
Amsterdam
,
1986
).
125.
D. A.
Fletcher
,
R. F.
McMeeking
, and
D.
Parkin
,
J. Chem. Inf. Comput. Sci.
36
,
746
(
1996
).
126.
K. E.
Bett
,
J. S.
Rowlinson
, and
G.
Saville
,
Thermodynamics for Chemical Engineers
(Athlone Press,
London
,
1975
).
127.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in Fortran
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
1992
).
128.
gPROMS, v2.6.10, Process Systems Enterprise Ltd. (http://www.psenterprise.com/).
129.
G.
Jackson
and
K. E.
Gubbins
,
Pure Appl. Chem.
61
,
1021
(
1989
).
130.
T.
Lafitte
,
D.
Bessieres
,
M. M.
Piñeiro
, and
J. L.
Daridon
,
J. Chem. Phys.
124
,
24509
(
2006
).
131.
C.
McCabe
and
S. B.
Kiselev
,
Fluid Phase Equilib.
219
,
3
(
2004
).
You do not currently have access to this content.