We consider a fluid of hard spheres bearing one or two uniform circular adhesive patches, distributed so as not to overlap. Two spheres interact via a “sticky” Baxter potential if the line joining the centers of the two spheres intersects a patch on each sphere, and via a hard sphere potential otherwise. We analyze the location of the fluid-fluid transition and of the percolation line as a function of the size of the patch (the fractional coverage of the sphere’s surface) and of the number of patches within a virial expansion up to third order and within the first two terms (C0 and C1) of a class of closures Cn hinging on a density expansion of the direct correlation function. We find that the locations of the two lines depend sensitively on both the total adhesive coverage and its distribution. The treatment is almost fully analytical within the chosen approximate theory. We test our findings by means of specialized Monte Carlo simulations and find the main qualitative features of the critical behavior to be well captured in spite of the low density perturbative nature of the closure. The introduction of anisotropic attractions into a model suspension of spherical particles is a first step toward a more realistic description of globular proteins in solution.

1.
L.
Boltzmann
,
Lectures on Gas Theory
(
Dover
,
New York
,
1995
), Chap. 6.
2.
G.
Jackson
,
W. G.
Chapman
, and
K. E.
Gubbins
,
Mol. Phys.
65
,
1
(
1988
).
3.
L.
Blum
,
P. T.
Cummings
, and
D.
Bratko
,
J. Chem. Phys.
92
,
3741
(
1990
).
4.
N. A.
Busch
,
M. S.
Wertheim
,
Y. C.
Chiew
, and
M. L.
Yarmush
,
J. Chem. Phys.
101
,
3147
(
1994
).
5.
D.
Ghonasgi
and
W. G.
Chapman
,
J. Chem. Phys.
102
,
2585
(
1995
).
6.
N. A.
Busch
,
M. S.
Wertheim
, and
M. L.
Yarmush
,
J. Chem. Phys.
104
,
3962
(
1996
).
7.
A.
Lomakin
,
N.
Asherie
, and
G. B.
Benedek
,
Proc. Natl. Acad. Sci. U.S.A.
96
,
9465
(
1999
).
8.
R. P.
Sear
,
J. Chem. Phys.
111
,
4800
(
1999
).
9.
E.
Mileva
and
G. T.
Evans
,
J. Chem. Phys.
113
,
3766
(
2000
).
10.
F.
Sciortino
,
Nat. Mater.
1
,
145
(
2002
).
11.
F. W.
Starr
and
J. F.
Douglas
,
J. Chem. Phys.
119
,
1777
(
2003
).
12.
N.
Kern
and
D.
Frenkel
,
J. Chem. Phys.
118
,
9882
(
2003
).
13.
Z.
Zhang
and
S. C.
Glotzer
,
Nano Lett.
4
,
1407
(
2004
).
15.
Y. S.
Cho
,
G. R.
Yi
,
J. M.
Lim
,
S. H.
Kim
,
V. N.
Maniharan
,
D. J.
Pine
, and
S. M.
Yang
,
J. Am. Chem. Soc.
127
,
15968
(
2005
).
16.
F.
Sciortino
,
P.
Tartaglia
, and
E.
Zaccarelli
,
J. Phys. Chem. B
109
,
21942
(
2005
).
17.
E.
Bianchi
,
J.
Largo
,
P.
Tartaglia
,
E.
Zaccarelli
, and
F.
Sciortino
,
Phys. Rev. Lett.
97
,
168301
(
2006
).
18.
M. F.
Hagan
and
D.
Chandler
,
Biophys. J.
91
,
42
(
2006
).
19.
A. W.
Wilber
,
J. P. K.
Doye
,
A. A.
Louis
,
E. G.
Noya
,
M. A.
Miller
, and
P.
Wong
,
J. Chem. Phys.
127
,
085106
(
2007
).
20.
M.
Wertheim
,
J. Stat. Phys.
35
,
19
(
1984
).
21.
Yu. V.
Kalyuzhnyi
,
M. F.
Holovko
, and
A. D. J.
Haymet
,
J. Chem. Phys.
95
,
9151
(
1991
).
22.
Yu. V.
Kalyuzhnyi
,
G.
Stell
,
M. L.
Llano-Rastrepo
,
W. G.
Chapman
, and
M. F.
Holovko
,
J. Chem. Phys.
101
,
7939
(
1994
).
23.
R.
Piazza
,
V.
Peyre
, and
V.
Degiorgio
,
Phys. Rev. E
58
,
R2733
(
1998
).
24.
A.
Giacometti
,
D.
Gazzillo
,
G.
Pastore
, and
T. K.
Das
,
Phys. Rev. E
71
,
031108
(
2005
).
25.
G.
Pellicane
,
D.
Costa
, and
C.
Caccamo
,
J. Phys. Chem. B
108
,
7538
(
2004
).
26.
A.
Lomakin
,
N.
Asherie
, and
G. B.
Benedek
,
J. Chem. Phys.
104
,
1646
(
1996
).
27.
R. J.
Baxter
,
J. Chem. Phys.
49
,
2770
(
1968
).
28.
G.
Stell
,
J. Stat. Phys.
63
,
1203
(
1991
).
29.
P.
Charbonneau
and
D.
Frenkel
,
J. Chem. Phys.
126
,
196101
(
2007
).
30.
C. G.
Gray
and
K. E.
Gubbins
,
Theory of Molecular Fluids
(
Clarendon
,
New York
,
1984
).
31.
L.
Blum
and
A. J.
Torruella
,
J. Chem. Phys.
56
,
303
(
1972
).
32.
L.
Blum
,
J. Chem. Phys.
57
,
1862
(
1972
).
33.
L.
Blum
,
J. Chem. Phys.
58
,
3295
(
1973
).
34.
M. S.
Wertheim
,
J. Chem. Phys.
55
,
4291
(
1971
).
35.
D.
Gazzillo
,
R.
Fantoni
, and
A.
Giacometti
(unpublished).
36.
D.
Gazzillo
and
A.
Giacometti
,
J. Chem. Phys.
120
,
4742
(
2004
).
37.
M. A.
Miller
and
D.
Frenkel
(unpublished).
38.
N. A.
Seaton
and
E. D.
Glandt
,
J. Chem. Phys.
87
,
1785
(
1987
).
39.
W. G. T.
Kranendonk
and
D.
Frenkel
,
Mol. Phys.
64
,
403
(
1988
).
40.
A.
Jamnik
and
D.
Bratko
,
Phys. Rev. E
50
,
1151
(
1994
).
41.
M. A.
Miller
and
D.
Frenkel
,
J. Chem. Phys.
121
,
535
(
2004
).
42.
M. A.
Miller
and
D.
Frenkel
,
Phys. Rev. Lett.
90
,
135702
(
2003
).
43.
44.
P. T.
Cummings
,
J. W.
Perram
, and
W. R.
Smith
,
Mol. Phys.
31
,
535
(
1976
).
45.
M. A.
Miller
and
D.
Frenkel
,
J. Phys.: Condens. Matter
16
,
S4901
(
2004
).
46.
F.
Romano
,
P.
Tartaglia
, and
F.
Sciortino
,
J. Phys.: Condens. Matter
19
,
322101
(
2007
).
47.
R.
Fantoni
,
D.
Gazzillo
,
A.
Giacometti
, and
P.
Sollich
,
J. Chem. Phys.
125
,
164504
(
2006
).
48.
N. F.
Carnahan
and
K. E.
Starling
,
J. Chem. Phys.
51
,
635
(
1969
).
49.
B. J.
Alder
and
T. E.
Wainwright
,
J. Chem. Phys.
27
,
1208
(
1957
).
50.
R.
Fantoni
,
D.
Gazzillo
, and
A.
Giacometti
,
J. Chem. Phys.
122
,
034901
(
2005
).
51.
U.
Alon
,
A.
Drory
, and
I.
Balberg
,
Phys. Rev. A
42
,
4634
(
1990
).
52.
G.
Foffi
and
F.
Sciortino
,
J. Phys. Chem. B
111
,
9702
(
2007
).
53.
P. R.
ten Wolde
and
D.
Frenkel
,
Science
277
,
1975
(
1997
).
54.
J. F.
Lutsko
and
G.
Nicolis
,
J. Chem. Phys.
122
,
244907
(
2005
).
55.
H. C.
Andersen
,
J. D.
Weeks
, and
D.
Chandler
,
Phys. Rev. A
4
,
1597
(
1971
).
56.
R. J.
Baxter
, in
Physical Chemistry, an Advanced Treatise
, edited by
D.
Henderson
(
Academic
,
New York
,
1971
), Vol.
8A
, Chap. 4.
57.
R. O.
Watts
,
D.
Henderson
, and
R. J.
Baxter
,
Adv. Chem. Phys.
21
,
421
(
1971
).
58.
S. M.
Oversteegen
and
H. N. W.
Lekkerkerker
,
Phys. Rev. E
68
,
021404
(
2003
).
You do not currently have access to this content.