The effects of lattice motion and relaxation on the dissociative adsorption of methane on a Ni(111) surface are explored. Electronic structure methods based on the density functional theory are used to compute the potential energy surface for this reaction. It is found that, in the transition state and product regions, there are forces causing the Ni atom over which the molecule dissociates to move out of the surface. In order to examine the extent to which the lattice might pucker during this reaction, high dimensional fully quantum scattering calculations are carried out. It is found that a significant amount of lattice puckering can occur, even at large collision energies, lowering the barrier to reaction and increasing the dissociative sticking probability. This is shown to be in contrast to the predictions of the surface oscillator model. While we observe similar puckering forces for this reaction on Pt(111), our calculations suggest that the puckering on this surface will be considerably less due to the larger metal atom mass. The “laser off” reactivities of CD3H on Ni(111) are computed, and it is demonstrated that there can be significant contributions to the reactivity from vibrationally excited molecules, particularly at lower collision energies, or when a large nozzle temperature is required to attain the necessary collision energy for reaction. Comparisons are made with recent experiments with regard to the variation of reactivity with collision energy, vibrational state, and surface temperature.

2.
R. D.
Beck
,
P.
Maroni
,
D. C.
Papageorgopoulos
,
T. T.
Dang
,
M. P.
Schmid
, and
T. R.
Rizzo
,
Science
302
,
98
(
2003
).
3.
R. R.
Smith
,
D. R.
Killelea
,
D. F.
DelSesto
, and
A. L.
Utz
,
Science
304
,
992
(
2004
).
4.
J. H.
Larsen
and
I.
Chorkendorff
,
Surf. Sci. Rep.
35
,
163
(
1999
).
5.
M. B.
Lee
,
Q. Y.
Yang
, and
S. T.
Ceyer
,
J. Chem. Phys.
87
,
2724
(
1987
).
6.
P. M.
Holmblad
,
J.
Wambach
, and
I.
Chorkendorff
,
J. Chem. Phys.
102
,
8255
(
1995
).
7.
A. C.
Luntz
,
J. Chem. Phys.
102
,
8264
(
1995
).
8.
L. B. F.
Juurlink
,
P. R.
McCabe
,
R. R.
Smith
,
C. L.
DiCologero
, and
A. L.
Utz
,
Phys. Rev. Lett.
83
,
868
(
1999
).
9.
M. P.
Schmid
,
P.
Maroni
,
R. D.
Beck
, and
T. R.
Rizzo
,
J. Chem. Phys.
117
,
8603
(
2002
).
10.
L. B. F.
Juurlink
,
R. R.
Smith
,
D. R.
Killelea
, and
A. L.
Utz
,
Phys. Rev. Lett.
94
,
208303
(
2005
).
11.
P.
Maroni
,
D. C.
Papageorgopoulos
,
M.
Sacchi
,
T. T.
Dang
,
R. D.
Beck
, and
T. R.
Rizzo
,
Phys. Rev. Lett.
94
,
246104
(
2005
).
12.
D. R.
Killelea
and
A. L.
Utz
(unpublished).
13.
A. C.
Luntz
and
J.
Harris
,
Surf. Sci.
258
,
397
(
1991
).
14.
M.
Hand
and
J.
Harris
,
J. Chem. Phys.
92
,
7610
(
1990
).
15.
M.-N.
Carré
and
B.
Jackson
,
J. Chem. Phys.
108
,
3722
(
1998
).
16.
V. A.
Ukraintsev
and
I.
Harrison
,
J. Chem. Phys.
101
,
1564
(
1994
).
17.
A.
Bukoski
,
D.
Blumling
, and
I.
Harrison
,
J. Chem. Phys.
118
,
843
(
2003
).
18.
A.
Bukoski
and
I.
Harrison
,
J. Chem. Phys.
118
,
9762
(
2003
).
19.
H. L.
Abbott
,
A.
Bukoski
,
D. F.
Kavulak
, and
I.
Harrison
,
J. Chem. Phys.
119
,
6407
(
2003
).
20.
H. L.
Abbott
,
A.
Bukoski
, and
I.
Harrison
,
J. Chem. Phys.
121
,
3792
(
2004
).
21.
K. M.
DeWitt
,
L.
Valadez
,
H. L.
Abbott
,
K. W.
Kolasinski
, and
I.
Harrison
,
J. Phys. Chem. B
110
,
6705
(
2006
).
22.
J.
Quattrucci
and
B.
Jackson
(unpublished).
23.
G.
Henkelman
and
H.
Jónsson
,
Phys. Rev. Lett.
86
,
664
(
2001
).
24.
G. R.
Darling
and
S.
Holloway
,
Rep. Prog. Phys.
58
,
1595
(
1995
).
26.
27.
G. J.
Kroes
,
G.
Wiesenekker
,
E. J.
Baerends
,
R. C.
Mowrey
, and
D.
Neuhauser
,
J. Chem. Phys.
105
,
5979
(
1996
).
28.
G. J.
Kroes
,
E. J.
Baerends
, and
R. C.
Mowrey
,
Phys. Rev. Lett.
78
,
3583
(
1997
).
29.
G. J.
Kroes
,
E. J.
Baerends
, and
R. C.
Mowrey
,
J. Chem. Phys.
107
,
3309
(
1997
).
30.
A.
Gross
,
B.
Hammer
,
M.
Scheffler
, and
W.
Brenig
,
Phys. Rev. Lett.
73
,
3121
(
1994
).
31.
A.
Gross
,
S.
Wilke
, and
M.
Scheffler
,
Phys. Rev. Lett.
75
,
2718
(
1995
).
32.
A.
Gross
and
M.
Scheffler
,
Chem. Phys. Lett.
256
,
417
(
1996
).
33.
J.
Dai
and
J. C.
Light
,
J. Chem. Phys.
107
,
1676
(
1997
).
34.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
);
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
);
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
);
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
35.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
46
,
6671
(
1992
).
36.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
48
,
4978
(
1993
).
37.
J. P.
Perdew
, in
Electronic Structure of Solids ’91
, edited by
P.
Ziesche
and
H.
Eschrig
(
Akademie-Verlag
,
Berlin
,
1991
), pp.
11
20
.
38.
D.
Vanderbilt
,
Phys. Rev. B
41
,
7892
(
1990
).
39.
G.
Kresse
and
J.
Hafner
,
J. Phys.: Condens. Matter
6
,
8245
(
1994
).
40.
P.
Kratzer
,
B.
Hammer
, and
J. K.
Nørskov
,
J. Chem. Phys.
105
,
5595
(
1996
).
41.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
42.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
113
,
9978
(
2000
).
43.
H.
Jónsson
,
G.
Mills
, and
K. W.
Jacobsen
, in
Classical and Quantum Dynamics in Condensed Phase Simulations
, edited by
B. J.
Berne
,
G.
Ciccotti
, and
D. F.
Coker
(
World Scientific
,
Singapore
,
1998
), pp.
385
404
.
44.
H.
Yang
and
J. L.
Whitten
,
J. Chem. Phys.
96
,
5529
(
1992
).
45.
H.
Yang
and
J. L.
Whitten
,
Surf. Sci.
255
,
193
(
1991
).
46.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
47.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
48.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
49.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
).
50.
S.
Sato
,
J. Chem. Phys.
23
,
592
(
1955
).
51.
J. H.
McCreery
and
G.
Wolken
, Jr.
,
J. Chem. Phys.
63
,
2340
(
1975
).
52.
S.
Nave
and
B.
Jackson
,
Phys. Rev. Lett.
98
,
173003
(
2007
).
53.
J. V.
Lill
,
G. A.
Parker
, and
J. C.
Light
,
Chem. Phys. Lett.
89
,
483
(
1982
).
54.
B.
Fornberg
,
A Practical Guide to Pseudospectral Methods
(
Cambridge University
,
Cambridge
,
1996
).
55.
D.
Gottlieb
and
S. A.
Orszag
,
Numerical Analysis of Spectral Methods: Theory and Applications
(
SIAM
,
Philadelphia
,
1977
).
56.
R.
Kosloff
,
J. Chem. Phys.
92
,
2087
(
1988
).
57.
R.
Kosloff
, in
Numerical Grid Methods and Their Application to Schrödinger’s Equation
,
NATO ASI Series C
Vol.
412
edited by
C.
Cerjan
(
Kluwer Academic
,
Dordrecht
,
1993
) pp.
175
194
.
58.
R.
Meyer
,
J. Chem. Phys.
52
,
2053
(
1970
).
59.
M. D.
Feit
,
J. A.
Fleck
, Jr.
, and
A.
Steiger
,
J. Comput. Phys.
47
,
412
(
1982
).
60.
D.
Kosloff
and
R.
Kosloff
,
J. Comput. Phys.
52
,
35
(
1983
).
61.
D.
Lemoine
,
J. Chem. Phys.
101
,
3936
(
1994
).
62.
D.
Lemoine
,
Chem. Phys. Lett.
224
,
483
(
1994
).
63.
D.
Lemoine
,
Comput. Phys. Commun.
99
,
297
(
1997
).
64.
D.
Lemoine
,
J. Chem. Phys.
101
,
10526
(
1994
).
65.
G. C.
Corey
,
J. W.
Tromp
, and
D.
Lemoine
, in
Numerical Grid Methods and Their Application to Schrödinger’s Equation
,
NATO ASI Series C
Vol.
412
edited by
C.
Cerjan
(
Kluwer Academic
,
Dordrecht
,
1993
) pp.
1
23
.
66.
G. C.
Corey
and
D.
Lemoine
,
J. Chem. Phys.
97
,
4115
(
1992
).
67.
A.
Jäckle
and
H.-D.
Meyer
,
J. Chem. Phys.
102
,
5605
(
1995
).
68.
R.
Kosloff
and
D.
Kosloff
,
J. Comput. Phys.
63
,
363
(
1986
).
69.
U. V.
Riss
and
H.-D.
Meyer
,
J. Chem. Phys.
105
,
1409
(
1996
).
70.
J.
Dai
and
J. Z. H.
Zhang
,
J. Phys. Chem.
100
,
6898
(
1996
).
71.
D. H.
Zhang
,
Q.
Wu
, and
J. Z. H.
Zhang
,
J. Chem. Phys.
102
,
124
(
1995
).
72.
S.
Nave
and
B.
Jackson
(unpublished).
73.
M.
Lewerenz
and
M.
Quack
,
J. Chem. Phys.
88
,
5408
(
1988
).
You do not currently have access to this content.