The B3LYP hybrid functional has shown to successfully predict a wide range of molecular properties. For periodic systems, however, the failure to attain the exact homogeneous electron gas limit as well as the semiempirical construction turns out to be a major drawback of the functional. We rigorously assess the B3LYP functional for solids through calculations of lattice parameters, bulk moduli, and thermochemical properties (atomization energies and reaction energies). The theoretical lattice constants overestimate the experimental ones by approximately 1%, and hence behave similarly to the PBE gradient-corrected exchange-correlation functional. B3LYP atomization energies of solids are drastically worse than those of nonempirical hybrid Hartree-Fock/density functionals (HF/DFT) such as PBE0 and HSE03. These large errors can be traced back to the lack of a proper description of “free-electron-like” systems with a significant itinerant character (metals and small gap semiconductors). Similar calculations using the popular semiempirical B3PW91 hybrid functional, which fulfills the uniform electron gas limit, show a clear improvement over B3LYP regarding atomization energies. Finally, theoretical values for heats of formation for both the B3LYP as well as the B3PW91 functionals are presented. These document a most likely fortuitously good agreement with experiment for the B3LYP hybrid functional.

1.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
2.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
3.
R. O.
Jones
and
O.
Gunnarson
,
Rev. Mod. Phys.
61
,
689
(
1989
).
4.
R. G.
Parr
and
W.
Yang
,
Density Functional Theory of Atoms and Molecules
(
Oxford
,
New York
,
1989
).
5.
R. M.
Dreizler
and
E. K. U.
Gross
,
Density Functional Theory
(
Springer Verlag
,
Berlin
,
1990
).
6.
J. P.
Perdew
and
K.
Schmidt
, in
Density Functional Theory and its Application to Materials
, edited by
V.
Van Doren
,
C.
Van Alsenoy
, and
P.
Geerlings
(
AIP
,
Melville, New York
,
2001
).
8.
O.
Gunnarsson
and
R. O.
Jones
,
Phys. Scr.
21
,
394
(
1980
).
9.
V. L.
Moruzzi
,
J. F.
Janak
, and
A. R.
Williams
,
Calculated Electronic Properties of Metals
(
Pergamon
,
Oxford
,
1978
).
10.
M. T.
Yin
and
M. L.
Cohen
,
Phys. Rev. B
26
,
5668
(
1982
).
11.
J. A.
Appelbaum
and
D. R.
Hamann
,
Rev. Mod. Phys.
48
,
479
(
1976
).
12.
G. A.
Baraff
and
M.
Schlüter
,
Phys. Rev. B
28
,
2296
(
1983
).
13.
O.
Gunnarsson
and
B. I.
Lundqvist
,
Phys. Rev. B
13
,
4274
(
1976
).
14.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
, and
J. A.
Pople
,
J. Chem. Phys.
106
,
1063
(
1997
).
15.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
46
,
6671
(
1992
);
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
48
,
4978
(E) (
1993
).
16.
J. P.
Perdew
,
K.
Burke
, and
Y.
Wang
,
Phys. Rev. B
54
,
16533
(
1996
);
J. P.
Perdew
,
K.
Burke
, and
Y.
Wang
,
Phys. Rev. B
57
,
14999
(E) (
1998
).
17.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
18.
Y.
Zhang
and
W.
Yang
,
Phys. Rev. Lett.
80
,
890
(
1998
).
19.
B.
Hammer
,
L. B.
Hansen
, and
J. K.
Nørskov
,
Phys. Rev. B
59
,
7413
(
1999
).
20.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
21.
A. D.
Becke
,
J. Chem. Phys.
109
,
2092
(
1998
).
22.
C.
Lee
,
W.
Yang
, and
R.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
23.
B.
Miehlich
,
A.
Savin
,
H.
Stoll
, and
H.
Preuss
,
Chem. Phys. Lett.
157
,
200
(
1989
).
24.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
Phys. Rev. Lett.
91
,
146401
(
2003
).
25.
J. P.
Perdew
,
S.
Kurth
,
A.
Zupan
, and
P.
Blaha
,
Phys. Rev. Lett.
82
,
2544
(
1999
).
26.
J. P.
Perdew
,
S.
Kurth
,
A.
Zupan
, and
P.
Blaha
,
Phys. Rev. Lett.
82
,
5179
(
1999
).
27.
A. D.
Becke
,
J. Chem. Phys.
112
,
4020
(
2000
).
28.
S.
Kurth
,
J. P.
Perdew
, and
P.
Blaha
,
Int. J. Quantum Chem.
75
,
889
(
1999
).
29.
J.
Harris
and
R. O.
Jones
,
J. Phys. F: Met. Phys.
4
,
1170
(
1974
).
30.
D. C.
Langreth
and
J. P.
Perdew
,
J. Phys. F: Met. Phys.
15
,
2884
(
1977
).
31.
32.
E.
Clementi
and
S. J.
Chakravorty
,
J. Chem. Phys.
93
,
2591
(
1990
).
33.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
34.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
35.
Gaussian NEWS Vol.
5
(
2
),
2
(Gaussian Inc., Pittsburgh, PA,
1994
).
36.
M.
Ernzerhof
,
Chem. Phys. Lett.
263
,
499
(
1996
).
37.
M.
Ernzerhof
,
J. P.
Perdew
, and
K.
Burke
,
Int. J. Quantum Chem.
64
,
285
(
1996
).
38.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
39.
M.
Ernzerhof
and
G. E.
Scuseria
,
J. Chem. Phys.
110
,
5029
(
1999
).
40.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
41.
V. N.
Staroverov
,
G. E.
Scuseria
,
J.
Tao
, and
J. P.
Perdew
,
J. Chem. Phys.
119
,
12129
(
2003
).
42.
R.
Dovesi
,
B.
Civalleri
,
R.
Orlando
,
C.
Roetti
, and
V. R.
Saunders
, in
Reviews in Computational Chemistry
, edited by
K. B.
Lipkowitz
,
R.
Larter
, and
T. R.
Cundari
(
Wiley VCH
,
New York
,
2005
), Vol.
21
, pp.
1
25
.
43.
T.
Bredow
and
A. R.
Gerson
,
Phys. Rev. B
61
,
5194
(
2000
).
44.
J.
Muscat
,
A.
Wander
, and
N. M.
Harrison
,
Chem. Phys. Lett.
342
,
397
(
2001
).
45.
46.
F.
Corà
,
M.
Alfredsson
,
G.
Mallia
,
D. S.
Middlemiss
,
W. C.
Mackrodt
,
R.
Dovesi
, and
R.
Orlando
,
Struct. Bonding (Berlin)
113
,
171
(
2004
).
47.
Y.
Zhang
,
W. L.
Lin
,
Y.
Li
,
K.
Ding
, and
J.
Li
,
Arch. Combust.
109
,
19270
(
2005
).
48.
F.
Labat
,
P.
Baranek
,
C.
Domian
,
C.
Minot
, and
C.
Adamo
,
J. Chem. Phys.
126
,
154703
(
2006
).
49.
T.
Todorova
,
A. P.
Seitsonen
,
J.
Hutter
,
I.-F. W.
Kuo
, and
C. J.
Mundy
,
J. Phys. Chem. B
110
,
3685
(
2006
).
50.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
8207
(
2003
).
51.
J.
Heyd
and
G. E.
Scuseria
,
J. Chem. Phys.
121
,
1187
(
2004
).
52.
J.
Heyd
,
J. E.
Peralta
,
G. E.
Scuseria
, and
R. L.
Martin
,
J. Chem. Phys.
123
,
174101
(
2005
).
53.
J.
Paier
,
M.
Marsman
,
K.
Hummer
,
G.
Kresse
,
I. C.
Gerber
, and
J. G.
Ángyán
,
J. Chem. Phys.
124
,
154709
(
2006
);
[PubMed]
J.
Paier
,
M.
Marsman
,
K.
Hummer
,
G.
Kresse
,
I. C.
Gerber
, and
J. G.
Ángyán
,
J. Chem. Phys.
125
,
249901
(E) (
2006
).
54.
J.
Paier
,
R.
Hirschl
,
M.
Marsman
, and
G.
Kresse
,
J. Chem. Phys.
122
,
234102
(
2005
).
55.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
48
,
13115
(
1993
).
56.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
);
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
57.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN 03, Revision C.02, Gaussian, Inc., Wallingford, CT,
2004
.
58.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
59.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
60.
A. D.
Becke
,
J. Chem. Phys.
104
,
1040
(
1996
).
61.
J.
Tao
,
P.
Gori-Giorgi
,
J. P.
Perdew
, and
R.
McWeeny
,
Phys. Rev. A
63
,
032513
(
2001
).
62.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
63.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
64.
F. D.
Murnaghan
,
Proc. Natl. Acad. Sci. U.S.A.
30
,
244
(
1944
).
65.
H.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
66.
P. E.
Blöchl
,
P. O.
Jepsen
, and
O. K.
Andersen
,
Phys. Rev. B
49
,
16223
(
1994
).
67.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
68.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
69.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
98
,
1358
(
1993
).
70.
T. H.
Dunning
, Jr.
,
K. A.
Peterson
, and
A. K.
Wilson
,
J. Chem. Phys.
114
,
9244
(
2001
).
71.
G. D.
Purvis
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
72.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
73.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
103
,
4572
(
1995
).
74.
K. A.
Peterson
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
117
,
10548
(
2002
).
75.
D.
Feller
,
J. Chem. Phys.
96
,
6104
(
1992
).
76.
F.
Jensen
,
J. Chem. Phys.
116
,
7372
(
2002
).
77.
A.
Karton
and
J. M. L.
Martin
,
Theor. Chem. Acc.
115
,
330
(
2005
).
78.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
,
J. Chem. Phys.
106
,
9639
(
1997
).
79.
M.
Marsman
and
G.
Kresse
,
J. Chem. Phys.
125
,
104101
(
2006
).
80.
E. R.
Davidson
,
S. A.
Hagstrom
,
S. J.
Chakravorty
,
V.
Meiser Umar
, and
C.
Froese Fischer
,
Phys. Rev. A
44
,
7071
(
1991
).
81.
D. M.
Ceperley
and
B. J.
Alder
,
Phys. Rev. Lett.
45
,
566
(
1980
).
82.
J. P.
Perdew
,
Int. J. Quantum Chem., Quantum Chem. Symp.
27
,
93
(
1993
).
83.
NIST-JANAF Thermochemical Tables
, edited by
M. W.
Chase
, Jr.
(
AIP
,
New York
,
1998
).
84.
Thermochemical Properties of Inorganic Substances
, edited by
O.
Knacke
,
O.
Kubaschewski
, and
K.
Hesselmann
(
Springer Verlag
,
Berlin
,
1991
).
85.

The experimental atomization energy for GaAs is calculated using ΔfHGaAs(T=298K)=74.056kJmol (Ref. 84), together with ΔfHGa1(g)(T=298K)=271.96kJmol, H(0K)H(298K)=6.551kJmol, and ΔfHAs1(g)(T=298K)=301.750kJmol (Ref. 84). For the thermochemical corrections HGaAs(0K)HGaAs(298K) and HAs1(g)(0K)HAs1(g)(298K), we took an estimate of 3 and 6kJmol, respectively, since to the best of our knowledge neither of the values are tabulated in the thermochemical literature.

86.

Note that similar to Ref. 85, no thermochemical correction HBP(0K)HBP(298K) could be found in the literature, assuming therefore a value of 3kJmol for it (compare to the tabulated 2.628kJmol for BN). Moreover, we want to underline that ΔfHB1(g)(T=298K)=560±12kJmol, which results in a quite large error bar for the atomization energy, ranging from 5.029to5.153eV.

87.

For the GaP and GaN atomization energies a H(0K)H(298K)=3kJmol is assumed.

88.

Due to the quite large experimental error bar of ΔfHB1(g)(T=298K) (see Ref. 86), the atomization energy of BN ranges from 6.54to6.66eVatom.

You do not currently have access to this content.