The infrared absorption spectrum of the protonated water dimer (H5O2+) is simulated in full dimensionality (15 dimensional) in the spectral range of 04000cm1. The calculations are performed using the multiconfiguration time-dependent Hartree (MCTDH) method for propagation of wavepackets. All the fundamentals and several overtones of the vibrational motion are computed. The spectrum of H5O2+ is shaped to a large extent by couplings of the proton-transfer motion to large amplitude fluxional motions of the water molecules, water bending and water-water stretch motions. These couplings are identified and discussed, and the corresponding spectral lines are assigned. The large couplings featured by H5O2+ do not hinder, however, to describe the coupled vibrational motion by well defined simple types of vibration (stretching, bending; etc.) based on well defined modes of vibration, in terms of which the spectral lines are assigned. Comparison of our results to recent experiments and calculations on the system is given. The reported MCTDH IR spectrum is in very good agreement to the recently measured spectrum by Hammer et al [J. Chem. Phys.122, 244301 (2005)].

1.
D.
Marx
,
M.
Tuckerman
,
J.
Hutter
, and
M.
Parrinello
,
Nature (London)
397
,
601
(
1999
).
2.
N.
Agmon
,
Isr. J. Chem.
39
,
493
(
1999
).
3.
J.-C.
Jiang
,
Y.-S.
Wang
,
H.-C.
Chang
,
S. H.
Lin
,
Y. T.
Lee
,
G.
Niedner-Schatteburg
, and
H.-C.
Chang
,
J. Am. Chem. Soc.
122
,
1398
(
2000
).
4.
J. M.
Headrick
,
E. G.
Diken
,
R. S.
Walters
,
N. I.
Hammer
,
R. A.
Christie
,
J.
Cui
,
E. M.
Myshakin
,
M. A.
Duncan
,
M. A.
Johnson
, and
K. D.
Jordan
,
Science
308
,
1765
(
2005
).
5.
N. I.
Hammer
,
E. G.
Diken
,
J. R.
Roscioli
,
M. A.
Johnson
,
E. M.
Myshakin
,
K. D.
Jordan
,
A. B.
McCoy
,
X.
Huang
,
J. M.
Bowman
, and
S.
Carter
,
J. Chem. Phys.
122
,
244301
(
2005
).
6.
L. R.
McCunn
,
J. R.
Roscioli
,
M. A.
Johnson
, and
A. B.
McCoy
,
J. Phys. Chem. B
(to be published).
7.
K. R.
Asmis
,
N. L.
Pivonka
,
G.
Santambrogio
,
M.
Brummer
,
C.
Kaposta
,
D. M.
Neumark
, and
L.
Woste
,
Science
299
,
1375
(
2003
).
8.
T. D.
Fridgen
,
T. B.
McMahon
,
L.
MacAleese
,
J.
Lemaire
, and
P.
Maitre
,
J. Phys. Chem. A
108
,
9008
(
2004
).
9.
J. M.
Headrick
,
J. C.
Bopp
, and
M. A.
Johnson
,
J. Chem. Phys.
121
,
11523
(
2004
).
10.
M. V.
Vener
,
O.
Kühn
, and
J.
Sauer
,
J. Chem. Phys.
114
,
240
(
2001
).
11.
J.
Dai
,
Z.
Bacic
,
X. C.
Huang
,
S.
Carter
, and
J. M.
Bowman
,
J. Chem. Phys.
119
,
6571
(
2003
).
12.
X.
Huang
,
B. J.
Braams
, and
J. M.
Bowman
,
J. Chem. Phys.
122
,
044308
(
2005
).
13.
J.
Sauer
and
J.
Dobler
,
ChemPhysChem
6
,
1706
(
2005
).
14.
M.
Kaledin
,
A. L.
Kaledin
, and
J. M.
Bowman
,
J. Phys. Chem. A
110
,
2933
(
2006
).
15.
O.
Vendrell
,
F.
Gatti
, and
H.-D.
Meyer
,
Angew. Chem., Int. Ed.
46
,
6918
(
2007
).
16.
O.
Vendrell
,
F.
Gatti
,
D.
Lauvergnat
, and
H.-D.
Meyer
,
J. Chem. Phys.
127
,
184302
(
2007
).
17.
U.
Manthe
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
97
,
3199
(
1992
).
18.
M. H.
Beck
,
A.
Jäckle
,
G. A.
Worth
, and
H.-D.
Meyer
,
Phys. Rep.
324
,
1
(
2000
).
19.
H.-D.
Meyer
and
G. A.
Worth
,
Theor. Chem. Acc.
109
,
251
(
2003
).
20.
G. A.
Worth
,
M. H.
Beck
,
A.
Jäckle
, and
H.-D.
Meyer
, The MCTDH Package, Version 8.2,
2000
;
H.-D.
Meyer
, The MCTDH Package, Version 8.3,
2002
;
The MCTDH Package, Version 8.4 (
2007
). See http://www.pci.uni-heidelberg.de/tc/usr/mctdh/
21.
G. G.
Balint-Kurti
,
R. N.
Dixon
, and
C. C.
Marston
,
J. Chem. Soc., Faraday Trans.
86
,
1741
(
1990
).
22.
H.-D.
Meyer
,
F.
Le Quéré
,
C.
Léonard
, and
F.
Gatti
,
Chem. Phys.
329
,
179
(
2006
).
23.
F.
Richter
,
F.
Gatti
,
C.
Léonard
,
F.
Le Quéré
, and
H.-D.
Meyer
,
J. Chem. Phys.
127
,
164315
(
2007
).
24.
M. R.
Wall
and
D.
Neuhauser
,
J. Chem. Phys.
102
,
8011
(
1995
).
25.
M. H.
Beck
and
H.-D.
Meyer
,
J. Chem. Phys.
109
,
3730
(
1998
).
26.
M. H.
Beck
and
H.-D.
Meyer
,
J. Chem. Phys.
114
,
2036
(
2001
).
27.
F.
Gatti
,
M. H.
Beck
,
G. A.
Worth
, and
H.-D.
Meyer
,
Phys. Chem. Chem. Phys.
3
,
1576
(
2001
).
28.
H. C.
Longuet-Higgins
,
Mol. Phys.
6
,
445
(
1963
).
29.
P. R.
Bunker
and
P.
Jensen
,
Molecular Symmetry and Spectroscopy
2nd ed. (
NRC Research
,
Ottawa
,
1998
).
30.
D. J.
Wales
,
J. Chem. Phys.
110
,
10403
(
1999
).
31.
J. M.
Bowman
,
S.
Carter
, and
X.
Huang
,
Int. Rev. Phys. Chem.
22
,
533
(
2003
).
32.
L. I.
Yeh
,
M.
Okumura
,
J. D.
Myers
,
J. M.
Price
, and
Y. T.
Lee
,
J. Chem. Phys.
91
,
7319
(
1989
).
33.
A. B.
McCoy
,
X.
Huang
,
S.
Carter
,
M. Y.
Landeweer
, and
J. M.
Bowman
,
J. Chem. Phys.
122
,
061101
(
2005
).
34.

Note that Wales (Ref. 30) uses a convention to assign irreducible representations which differs from the one we use (Ref. 29). The latter convention has the advantage to be consistent with the convention of the D2d point group.

You do not currently have access to this content.