Quantum-dynamical full-dimensional (15D) calculations are reported for the protonated water dimer (H5O2+) using the multiconfiguration time-dependent Hartree (MCTDH) method. The dynamics is described by curvilinear coordinates. The expression of the kinetic energy operator in this set of coordinates is given and its derivation, following the polyspherical method, is discussed. The potential-energy surface (PES) employed is that of Huang et al [J. Chem. Phys.122, 044308 (2005)]. A scheme for the representation of the PES is discussed which is based on a high-dimensional model representation scheme, but modified to take advantage of the mode-combination representation of the vibrational wave function used in MCTDH. The convergence of the PES expansion used is quantified and evidence is provided that it correctly reproduces the reference PES at least for the range of energies of interest. The reported zero point energy of the system is converged with respect to the MCTDH expansion and in excellent agreement (16.7cm1 below) with the diffusion Monte Carlo result on the PES of Huang et al. The highly fluxional nature of the cation is accounted for through use of curvilinear coordinates. The system is found to interconvert between equivalent minima through wagging and internal rotation motions already when in the ground vibrational state, i.e., T=0. It is shown that a converged quantum-dynamical description of such a flexible, multiminima system is possible.

1.
K. R.
Asmis
,
N. L.
Pivonka
,
G.
Santambrogio
,
M.
Brummer
,
C.
Kaposta
,
D. M.
Neumark
, and
L.
Woste
,
Science
299
,
1375
(
2003
).
2.
T. D.
Fridgen
,
T. B.
McMahon
,
L.
MacAleese
,
J.
Lemaire
, and
P.
Maitre
,
J. Phys. Chem. A
108
,
9008
(
2004
).
3.
J. M.
Headrick
,
J. C.
Bopp
, and
M. A.
Johnson
,
J. Chem. Phys.
121
,
11523
(
2004
).
4.
N. I.
Hammer
,
E. G.
Diken
,
J. R.
Roscioli
,
M. A.
Johnson
,
E. M.
Myshakin
,
K. D.
Jordan
,
A. B.
McCoy
,
J. M.
Bowman
, and
S.
Carter
,
J. Chem. Phys.
122
,
244301
(
2005
).
5.
J. M.
Headrick
,
E. G.
Diken
,
R. S.
Walters
,
N. I.
Hammer
,
R. A.
Christie
,
J.
Cui
,
E. M.
Myshakin
,
M. A.
Duncan
,
M. A.
Johnson
, and
K. D.
Jordan
,
Science
308
,
1765
(
2005
).
6.
J. R.
Roscioli
,
L. R.
McCunn
, and
M. A.
Johnson
,
Science
316
,
249
(
2007
).
7.
X.
Huang
,
B. J.
Braams
, and
J. M.
Bowman
,
J. Chem. Phys.
122
,
044308
(
2005
).
8.
M. V.
Vener
,
O.
Kühn
, and
J.
Sauer
,
J. Chem. Phys.
114
,
240
(
2001
).
9.
J.
Dai
,
Z.
Bacic
,
X. C.
Huang
,
S.
Carter
, and
J. M.
Bowman
,
J. Chem. Phys.
119
,
6571
(
2003
).
10.
J.
Sauer
and
J.
Dobler
,
ChemPhysChem
6
,
1706
(
2005
).
11.
M.
Kaledin
,
A. L.
Kaledin
, and
J. M.
Bowman
,
J. Phys. Chem. A
110
,
2933
(
2006
).
12.
A. B.
McCoy
,
X.
Huang
,
S.
Carter
,
M. Y.
Landeweer
, and
J. M.
Bowman
,
J. Chem. Phys.
122
,
061101
(
2005
).
13.
14.
F.
Gatti
,
C.
Iung
,
M.
Menou
,
Y.
Justum
,
A.
Nauts
, and
X.
Chapuisat
,
J. Chem. Phys.
108
,
8804
(
1998
).
15.
F.
Gatti
,
J. Chem. Phys.
111
,
7225
(
1999
).
16.
F.
Gatti
,
C.
Munoz
, and
C.
Iung
,
J. Chem. Phys.
114
,
8275
(
2001
).
17.
F.
Gatti
and
C.
Iung
,
J. Theor. Comput. Chem.
2
,
507
(
2003
).
18.
J. M.
Bowman
,
S.
Carter
, and
X.
Huang
,
Int. Rev. Phys. Chem.
22
,
533
(
2003
).
19.
H.
Rabitz
and
O. F.
Alis
,
J. Math. Chem.
25
,
197
(
1999
).
20.
G.
Li
,
S.
Wang
,
C.
Rosenthal
, and
H.
Rabitz
,
J. Math. Chem.
30
,
1
(
2001
).
21.
O.
Vendrell
,
F.
Gatti
, and
H.-D.
Meyer
,
J. Chem. Phys.
127
,
184303
(
2007
).
22.
H.-D.
Meyer
,
U.
Manthe
, and
L. S.
Cederbaum
,
Chem. Phys. Lett.
165
,
73
(
1990
).
23.
U.
Manthe
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
97
,
3199
(
1992
).
24.
M. H.
Beck
,
A.
Jäckle
,
G. A.
Worth
, and
H.-D.
Meyer
,
Phys. Rep.
324
,
1
(
2000
).
25.
H.-D.
Meyer
and
G. A.
Worth
,
Theor. Chem. Acc.
109
,
251
(
2003
).
26.
G. A.
Worth
,
M. H.
Beck
,
A.
Jäckle
, and
H.-D.
Meyer
, the MCTDH package, Version 8.2,
2000
;
H.-D.
Meyer
, the MCTDH package, Version 8.3,
2002
;
the MCTDH package, Version 8.4,
2007
(see http://www.pci.uni-heidelberg.de/tc/usr/mctdh/).
27.
F.
Gatti
,
C.
Iung
,
M.
Menou
, and
X.
Chapuisat
,
J. Chem. Phys.
108
,
8821
(
1998
).
28.
C.
Iung
,
F.
Gatti
,
A.
Viel
, and
X.
Chapuisat
,
Phys. Chem. Chem. Phys.
1
,
3377
(
1999
).
29.
C.
Leforestier
,
F.
Gatti
,
R. S.
Fellers
, and
R. J.
Saykally
,
J. Chem. Phys.
117
,
8710
(
2002
).
30.
F.
Gatti
and
A.
Nauts
,
Chem. Phys.
295
,
167
(
2003
).
31.
D.
Lauvergnat
and
A.
Nauts
,
J. Chem. Phys.
116
,
8560
(
2002
).
32.
A.
Jäckle
and
H.-D.
Meyer
,
J. Chem. Phys.
104
,
7974
(
1996
).
33.
A.
Jäckle
and
H.-D.
Meyer
,
J. Chem. Phys.
109
,
3772
(
1998
).
34.
O. F.
Alis
and
H.
Rabitz
,
J. Math. Chem.
29
,
127
(
2001
).
35.
G. Y.
Li
,
J. S.
Hu
,
S. W.
Wang
,
P. G.
Georgopoulos
,
J.
Schoendorf
, and
H.
Rabitz
,
J. Phys. Chem. A
110
,
2474
(
2006
).
36.
S.
Manzhos
and
T.
Carrington
,
J. Chem. Phys.
125
,
084109
(
2006
).
37.
S. W.
Wang
,
P. G.
Georgopoulos
,
G. Y.
Li
, and
H.
Rabitz
,
J. Phys. Chem. A
107
,
4707
(
2003
).
38.
A.
Chakraborty
,
D. G.
Truhlar
,
J. M.
Bowman
, and
S.
Carter
,
J. Chem. Phys.
121
,
2071
(
2004
).
39.
G. J.
Kroes
and
H.-D.
Meyer
,
Chem. Phys. Lett.
440
,
334
(
2007
).
40.
D. J.
Wales
,
J. Chem. Phys.
110
,
10403
(
1999
).
41.
P. R.
Bunker
and
P.
Jensen
,
Molecular Symmetry and Spectroscopy
, 2nd ed. (
NRC Research Press
,
Ottawa
,
1998
).
42.
H.-D.
Meyer
,
F.
Le Quéré
,
C.
Léonard
, and
F.
Gatti
,
Chem. Phys.
329
,
179
(
2006
).
You do not currently have access to this content.