A comprehensive study, throughout the valence region, of the electronic structure and electron momentum density distributions of the four conformational isomers of n-pentane is presented. Theoretical (e,2e) valence ionization spectra at high electron impact energies (1200eV+electron binding energy) and at azimuthal angles ranging from 0° to 10° in a noncoplanar symmetric kinematical setup are generated according to the results of large scale one-particle Green’s function calculations of Dyson orbitals and related electron binding energies, using the third-order algebraic-diagrammatic construction [ADC(3)] scheme. The results of a focal point analysis (FPA) of relative conformer energies [A. Salam and M. S. Deleuze, J. Chem. Phys.116, 1296 (2002)] and improved thermodynamical calculations accounting for hindered rotations are also employed in order to quantitatively evaluate the abundance of each conformer in the gas phase at room temperature and reliably predict the outcome of experiments on n-pentane employing high resolution electron momentum spectroscopy. Comparison with available photoelectron measurements confirms the suggestion that, due to entropy effects, the trans-gauche(tg) conformer strongly dominates the conformational mixture characterizing n-pentane at room temperature. Our simulations demonstrate therefore that experimental measurements of (e,2e) valence ionization spectra and electron momentum distributions would very consistently and straightforwardly image the topological changes and energy variations that molecular orbitals undergo due to torsion of the carbon backbone. The strongest fingerprints for the most stable conformer (tt) are found for the electron momentum distributions associated with ionization channels at the top of the inner-valence region, which sensitively image the development of methylenic hyperconjugation in all-staggered n-alkane chains.

1.
E. L.
Eliel
,
N. L.
Allinger
,
S. J.
Angyal
, and
G. A.
Morrison
,
Conformational Analysis
(
Wiley
,
New York
,
1965
).
2.
M.
Lipton
and
W. C.
Still
,
J. Comput. Chem.
9
,
343
(
1988
).
3.
N.
Nair
and
J. M.
Goodman
,
J. Chem. Inf. Comput. Sci.
38
,
317
(
1998
).
4.
G. T.
Fraser
,
R. D.
Suenram
, and
C. L.
Lugez
,
J. Phys. Chem. A
104
,
1141
(
2000
).
5.
J.
Friedrich
,
G.
Kühn
,
R.
Mix
, and
W.
Unger
,
Plasma Processes Polym.
1
,
28
(
2004
).
6.
H. C.
Zhao
,
P.
Yang
,
J. P.
Deng
,
L. Y.
Liu
,
J. W.
Zhu
,
Y. A.
Sui
,
J. M.
Lu
, and
W. T.
Yang
,
Langmuir
23
,
1810
(
2007
).
7.
K. S.
Pitzer
,
J. Chem. Phys.
8
,
711
(
1940
).
8.
(a)
G. J.
Szasz
,
N.
Sheppard
, and
D. H.
Rank
,
J. Chem. Phys.
16
,
704
(
1948
);
(b)
N.
Sheppard
and
G. J.
Szasz
,
J. Chem. Phys.
17
,
86
(
1949
);
(c)
A. L.
Verma
,
W. F.
Murphy
, and
H. J.
Bernstein
,
J. Chem. Phys.
60
,
1540
(
1974
);
(d)
D. A. C.
Compton
,
S.
Montero
, and
W. F.
Murphy
,
J. Phys. Chem.
84
,
3587
(
1980
);
(e)
J. R.
Durig
and
D. A. C.
Compton
,
J. Phys. Chem.
83
,
265
(
1979
);
(f)
J.
Devaure
and
J.
Lascombe
,
Nouv. J. Chim.
3
,
579
(
1979
);
(g)
S.
Kint
,
J. R.
Scherer
, and
R. G.
Snyder
,
J. Chem. Phys.
73
,
2599
(
1980
);
(h)
L.
Rosenthal
,
J. F.
Rabolt
, and
J.
Hummel
,
J. Chem. Phys.
76
,
817
(
1982
);
(i)
I.
Kanesaka
,
R. G.
Snyder
, and
H. L.
Strauss
,
J. Chem. Phys.
84
,
395
(
1986
).
9.
K.
Ito
,
J. Am. Chem. Soc.
75
,
2430
(
1953
).
10.
L. S.
Bartell
and
D. A.
Kohl
,
J. Chem. Phys.
39
,
3097
(
1963
).
11.
W. F.
Bradford
,
S.
Fitzwater
, and
L. S.
Bartell
,
J. Mol. Struct.
38
,
185
(
1977
);
J. H.
Schachtschneider
and
R. G.
Snyder
,
Spectrochim. Acta
19
,
117
(
1963
);
W. F.
Murphy
,
J. M.
Fernández-Sáchez
, and
K.
Raghavachari
,
J. Phys. Chem.
95
,
1124
(
1991
).
12.
P. B.
Woller
and
E. W.
Garbisch
, Jr.
,
J. Am. Chem. Soc.
94
,
5310
(
1972
).
13.
H. D.
Stidham
and
J. R.
Durig
,
Spectrochim. Acta, Part A
42
,
105
(
1986
);
W. A.
Herrebout
,
B. J.
van der Veken
,
A.
Wang
, and
J. R.
Durig
,
J. Phys. Chem.
99
,
578
(
1995
).
14.
J. E.
Piercy
and
M. G.
Seshagiri Rao
,
J. Chem. Phys.
46
,
3951
(
1967
).
15.
(a)
L.
Radom
,
W. A.
Lathan
,
W. J.
Hehre
, and
J. A.
Pople
,
J. Am. Chem. Soc.
95
,
693
(
1973
);
(b)
J. R.
Hoyland
,
J. Chem. Phys.
49
,
2563
(
1968
);
(c)
M. R.
Peterson
and
I. G.
Csizmadia
,
J. Am. Chem. Soc.
22
,
6912
(
1978
);
(d)
F. A.
Van-Catledge
and
N. L.
Allinger
,
J. Am. Chem. Soc.
104
,
6272
(
1982
);
(e)
D.
Steele
,
J. Chem. Soc., Faraday Trans. 2
81
,
1077
(
1985
);
(f)
K.
Raghavachari
,
J. Chem. Phys.
81
,
1383
(
1984
);
(g)
K. B.
Wiberg
and
M. A.
Murcko
,
J. Am. Chem. Soc.
110
,
8029
(
1988
);
(h)
N. L.
Allinger
,
R. S.
Grev
,
B. F.
Yates
, and
H. F.
Schaefer
III
,
J. Am. Chem. Soc.
112
,
114
(
1990
);
(i)
N. G.
Mirkin
and
S.
Krimm
,
J. Phys. Chem.
97
,
13887
(
1993
);
(j)
M. A.
Murcko
,
H.
Castejon
, and
K. B.
Wiberg
,
J. Phys. Chem.
100
,
16162
(
1996
);
(k)
G. D.
Smith
and
R. L.
Jaffe
,
J. Phys. Chem.
100
,
18718
(
1996
);
(l)
N. L.
Allinger
,
J. T.
Fermann
,
W. D.
Allen
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
106
,
5143
(
1997
).
16.
A.
Salam
and
M. S.
Deleuze
,
J. Chem. Phys.
116
,
1296
(
2002
).
17.
M. S.
Deleuze
,
W. N.
Pang
,
A.
Salam
, and
R. C.
Shang
,
J. Am. Chem. Soc.
123
,
4049
(
2001
).
18.
A. A.
Asheko
and
O. I.
Ivanova
,
Russ. J. Phys. Chem.
63
,
1588
(
1989
).
19.
D. A.
McQuarrie
,
Statistical Thermodynamics
(
Harper and Row
,
New York
,
1976
).
20.
P.
Vansteenkiste
,
V.
Van Speybroeck
,
G. B.
Marin
, and
M.
Waroquier
,
J. Phys. Chem.
107
,
3139
(
2003
).
21.
W. C.
Price
,
A. W.
Potts
, and
D. G.
Streets
, in
Electron Spectroscopy
, edited by
D. A.
Shirley
(
North-Holland
,
Amsterdam
,
1972
), p.
187
.
22.
J. J.
Pireaux
and
R.
Caudano
,
Am. J. Phys.
52
,
821
(
1984
);
J. J.
Pireaux
,
S.
Svensson
,
E.
Basilier
,
P.-A.
Malmqvist
,
U.
Gelius
,
R.
Caudano
, and
K.
Siegbahn
,
Phys. Rev. A
14
,
2133
(
1976
);
J.-J.
Pireaux
,
S.
Svensson
,
E.
Basilier
,
P.-A.
Malmqvist
,
U.
Gelius
,
R.
Caudano
, and
K.
Siegbahn
,
J. Phys. (France)
38
,
1213
(
1977
);
J.-J.
Pireaux
and
R.
Caudano
,
Phys. Rev. B
15
,
2242
(
1977
);
J.-J.
Pireaux
,
S.
Svensson
,
E.
Basilier
,
P.-A.
Malmqvist
,
U.
Gelius
,
R.
Caudano
, and
K.
Siegbahn
,
J. Phys. (France)
38
,
1221
(
1977
).
23.
K.
Kimura
,
S.
Katsumata
,
Y.
Achiba
,
T.
Yamazaki
, and
S.
Iwata
,
Handbook of HeI Photoelectron Spectra of Fundamental Organic Molecules
(
Japan Scientific Society
,
Tokyo
,
1981
).
24.
For a review, see, e.g.,
A.
Karpfen
,
J. Chem. Phys.
75
,
238
(
1981
).
25.
J.
Delhalle
,
J.-M.
André
,
S.
Delhalle
,
J. J.
Pireaux
,
R.
Caudano
, and
J. J.
Verbist
,
J. Chem. Phys.
60
,
595
(
1974
);
K.
Seki
,
U.
Karlsson
,
R.
Engelhardt
, and
E. E.
Koch
,
Chem. Phys. Lett.
103
,
343
(
1984
);
K.
Seki
,
N.
Ueno
,
U. O.
Karlsson
,
R.
Engelhardt
, and
E. E.
Koch
,
Chem. Phys.
105
,
247
(
1986
);
H.
Fujimoto
,
T.
Mori
,
H.
Inokuchi
,
N.
Ueno
,
K.
Sugita
, and
K.
Seki
,
Chem. Phys. Lett.
141
,
485
(
1987
);
N.
Ueno
,
K.
Seki
,
N.
Sato
,
H.
Fujimoto
,
T.
Kuramochi
,
K.
Sugita
, and
H.
Inokuchi
,
Phys. Rev. B
41
,
1176
(
1990
).
26.
M. S.
Deleuze
and
L. S.
Cederbaum
,
J. Chem. Phys.
105
,
7583
(
1996
);
A.
Golod
,
M. S.
Deleuze
, and
L. S.
Cederbaum
,
J. Chem. Phys.
110
,
6014
(
1999
).
27.
(a)
J.
Linderberg
and
Y.
Öhrn
,
Propagators in Quantum Chemistry
(
Academic
,
London
,
1973
);
(b)
B. T.
Pickup
and
O.
Goscinski
,
Mol. Phys.
26
,
1013
(
1973
);
(c)
L. S.
Cederbaum
,
G.
Hohlneicher
, and
W.
von Niessen
,
Mol. Phys.
26
,
1405
(
1973
);
(d)
L. S.
Cederbaum
and
W.
Domcke
,
Adv. Chem. Phys.
36
,
205
(
1977
);
(e)
M. F.
Herman
,
K. F.
Freed
, and
D. L.
Yeager
,
Adv. Chem. Phys.
48
,
1
(
1981
);
(f)
Y.
Őhrn
and
G.
Born
,
Adv. Quantum Chem.
13
,
1
(
1981
);
(g)
W.
von Niessen
,
J.
Schirmer
, and
L. S.
Cederbaum
,
Comput. Phys. Rep.
1
,
57
(
1984
);
(h)
J. V.
Ortiz
, in
Computational Chemistry: Reviews of Current Trends
, edited by
J.
Leszczynski
(
World Scientific
,
Singapore
,
1997
), Vol.
2
, p.
1
.
28.
(a)
J.
Schirmer
,
L. S.
Cederbaum
, and
O.
Walter
,
Phys. Rev. A
28
,
1237
(
1983
);
(b)
J.
Schirmer
and
G.
Angonoa
,
J. Chem. Phys.
91
,
1754
(
1989
);
(c)
H. G.
Weikert
,
H.-D.
Meyer
,
L. S.
Cederbaum
, and
F.
Tarantelli
,
J. Chem. Phys.
104
,
7122
(
1996
);
(d)
M. S.
Deleuze
,
M. G.
Giuffreda
,
J.-P.
François
, and
L. S.
Cederbaum
,
J. Chem. Phys.
111
,
5851
(
1999
).
29.
(a)
M.
Deleuze
,
J.-P.
Denis
,
J.
Delhalle
, and
B. T.
Pickup
,
J. Phys. Chem.
97
,
5115
(
1993
);
(b)
M.
Deleuze
,
J.
Delhalle
,
B. T.
Pickup
, and
S.
Svensson
,
J. Am. Chem. Soc.
116
,
10715
(
1994
);
(c)
M.
Deleuze
,
J.
Delhalle
, and
B. T.
Pickup
,
J. Phys. Chem.
98
,
2382
(
1994
).
30.
U.
Gelius
,
J. Electron Spectrosc. Relat. Phenom.
5
,
985
(
1974
).
31.
M.
Deleuze
,
J.
Delhalle
,
D. H.
Mosely
, and
J.-M.
André
,
Phys. Scr.
51
,
111
(
1995
);
A.-S.
Duwez
,
S.
Di paolo
,
J.
Ghijsen
,
J.
Riga
,
M. S.
Deleuze
, and
J.
Delhalle
,
J. Phys. Chem. B
101
,
884
(
1997
);
M. S.
Deleuze
and
J.
Delhalle
,
J. Phys. Chem. A
105
,
6695
(
2001
).
32.
A.
Salomon
,
D.
Cahen
,
S.
Lindsay
,
J.
Tomfohr
,
V. B.
Engelkes
, and
C. D.
Frisbie
,
Adv. Mater. (Weinheim, Ger.)
15
,
1881
(
2003
);
S. M.
Lindsay
and
M. A.
Ratner
,
Adv. Mater. (Weinheim, Ger.)
19
,
23
(
2007
).
33.
W. N.
Pang
,
J. F.
Gao
,
C. J.
Ruan
,
R. C.
Shang
,
A. B.
Trofimov
, and
M. S.
Deleuze
,
J. Chem. Phys.
112
,
8043
(
2000
).
34.
(a)
I. E.
McCarthy
and
E.
Weigold
,
Rep. Prog. Phys.
54
,
789
(
1991
);
(b)
K. T.
Leung
, in
Theoretical Models of Chemical Bonding
, edited by
Z. B.
Maksic
(
Springer-Verlag
,
Berlin
,
1991
), Vol.
3
, p.
339
;
(c)
E.
Weigold
and
I. E.
McCarthy
,
Electron Momentum Spectroscopy
(
Kluwer/Plenum
,
New York
,
1999
);
(d)
M. A.
Coplan
,
J. H.
Moore
, and
J. P.
Doering
,
Rev. Mod. Phys.
66
,
985
(
1994
).
35.
M. S.
Deleuze
and
S.
Knippenberg
,
J. Chem. Phys.
125
,
104309
(
2006
).
36.
(a)
B. T.
Pickup
,
Chem. Phys.
19
,
193
(
1977
);
(b)
R.
McWeeny
and
B. T.
Pickup
,
Rep. Prog. Phys.
43
,
1065
(
1980
);
(c)
M.
Deleuze
,
B. T.
Pickup
, and
J.
Delhalle
,
Mol. Phys.
83
,
655
(
1994
);
(d)
G. M.
Seabra
,
I. G.
Kaplan
,
V. G.
Zakrzewski
, and
J. V.
Ortiz
,
J. Chem. Phys.
121
,
4142
(
2004
).
37.
M.
Takahashi
,
T.
Saito
,
J.
Hiraka
, and
Y.
Udawaga
,
J. Phys. B
36
,
2539
(
2003
);
M.
Takahashi
and
Y.
Udawaga
,
J. Electron Spectrosc. Relat. Phenom.
137
,
387
(
2004
).
38.
M. S.
Deleuze
,
Int. J. Quantum Chem.
93
,
191
(
2003
).
39.
H.-J.
Werner
and
P. J.
Knowles
,
J. Chem. Phys.
89
,
5803
(
1988
).
40.
M.
Deleuze
,
J.
Delhalle
,
B. T.
Pickup
, and
J.-L.
Calais
,
Adv. Quantum Chem.
26
,
35
(
1995
).
41.
Y.
Zheng
,
W. N.
Pang
,
R. C.
Shang
,
X. J.
Chen
,
C. E.
Brion
,
T. K.
Ghanty
, and
E. R.
Davidson
,
J. Chem. Phys.
111
,
9526
(
1999
).
42.
C. G.
Ning
,
X. G.
Ren
,
J. K.
Deng
,
G. L.
Su
,
S. F.
Zhang
,
S.
Knippenberg
, and
M. S.
Deleuze
,
Chem. Phys. Lett.
421
,
52
(
2006
).
43.
Y. R.
Huang
,
S.
Knippenberg
,
B.
Hajgato
,
J.-P.
François
,
J. K.
Deng
, and
M. S.
Deleuze
,
J. Phys. Chem. A
111
,
5879
(
2007
).
44.
C. G.
Ning
,
B.
Hajgato
,
S. F.
Zhang
,
K.
Liu
,
Z. H.
Luo
,
S.
Knippenberg
,
J.-K.
Deng
, and
M. S.
Deleuze
, Chem. Phys. accepted for publication.
45.
M. J.
Frisch
,
J. A.
Pople
, and
J. S.
Binkley
,
J. Chem. Phys.
80
,
3265
(
1984
).
46.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
);
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
47.
P. Y.
Ayala
and
H. B.
Schlegel
,
J. Chem. Phys.
108
,
2314
(
1998
).
48.
J. E.
Kilpatrick
and
K. S.
Pitzer
,
J. Chem. Phys.
17
,
1064
(
1949
).
49.
S. L.
Mayo
,
B. D.
Olafson
, and
W. A.
Goddard
,
J. Phys. Chem.
94
,
8897
(
1990
).
50.
K. S.
Pitzer
and
W. D.
Gwinn
,
J. Chem. Phys.
10
,
428
(
1942
).
51.
M. J.
Frisch
,
G. W.
Trucks
,
H. G.
Schlegel
 et al, GAUSSIAN 98, Revision A.7, Gaussian, Inc., Pittsburgh, PA,
1998
.
52.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
53.

The 1p-GF/ADC(3) code originally written by G. Angonoa, O. Walter, J. Schirmer, and L. S. Cederbaum and further developed by M. K. Scheller and A. B. Trofimov.

54.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
 et al,
J. Comput. Chem.
14
,
1347
(
1993
).
55.
B.
Liu
, Lawrence Berkeley Laboratory Report No. LBL-8158 (unpublished);
F.
Tarantelli
,
A.
Sgamellotti
,
L. S.
Cederbaum
, and
J.
Schirmer
,
J. Chem. Phys.
86
,
2201
(
1987
).
56.
S.
Knippenberg
,
K. L.
Nixon
,
M. J.
Brunger
 et al,
J. Chem. Phys.
121
,
10525
(
2004
).
57.
S.
Knippenberg
,
M. S.
Deleuze
,
T. J.
Cleij
,
J.-P.
François
,
L. S.
Cederbaum
, and
J. H. D.
Eland
,
J. Phys. Chem. A
109
,
4267
(
2005
).
58.
M. S.
Deleuze
,
A. B.
Trofimov
, and
L. S.
Cederbaum
,
J. Chem. Phys.
115
,
5859
(
2001
);
N.
Kishimoto
,
Y.
Hagihara
,
K.
Ohno
,
S.
Knippenberg
,
J.-P.
François
, and
M. S.
Deleuze
,
J. Phys. Chem. A
198
,
10535
(
2005
) and references therein.
59.
X. G.
Ren
,
C. G.
Ning
,
J. K.
Deng
,
S.
Zhang
,
G.
Sum
,
F.
Huang
, and
G.
Li
,
Chem. Phys. Lett.
404
,
279
(
2005
);
G. L.
Su
,
X. G.
Ren
,
G. L.
Su
, and
C. G.
Ning
,
J. Chem. Phys.
122
,
054301
(
2005
);
S. F.
Zhang
,
X. G.
Ren
,
G. L.
Su
,
C. G.
Ning
,
H.
Zhou
,
B.
Li
,
G. Q.
Li
, and
J. K.
Deng
,
Chem. Phys.
327
,
269
(
2006
).
60.
See various contributions to the original HEMS program as recorded by Bawagan (
A. O.
Bawagan
, Ph.D. thesis,
University of British Columbia
,
1987
). The HEMS (now known as MOMAP) program has been extensively revised and extended at UBC by N. M. Cann and G. Cooper.
61.
P.
Duffy
,
M. E.
Casida
,
C. E.
Brion
, and
D. P.
Chong
,
Chem. Phys.
159
,
347
(
1992
).
62.
Y.
Zheng
,
J. J.
Neville
,
C. E.
Brion
,
Y.
Wang
, and
E. R.
Davidson
,
Chem. Phys.
188
,
109
(
1994
).
63.
J. B.
Klauda
,
B. R.
Brooks
,
A. D.
MacKerell
,Jr.
,
R. M.
Venable
, and
R. W.
Pastor
,
J. Phys. Chem. B
109
,
5300
(
2005
);
[PubMed]
J. B.
Klauda
,
R. W.
Pastor
, and
B. R.
Brooks
,
J. Phys. Chem. B
109
,
15684
(
2005
).
[PubMed]
64.
P.
Mencarelli
,
J. Chem. Educ.
72
,
13887
(
1993
).
65.
See EPAPS Document No. E-JCPSA6-127-301734 for the molecular orbital correlation diagram between the tg and g+G conformers in the inner-valence (Fig. S1) and outer-valence (Fig. S2) region, as well as for the list of the shake-up lines with a pole strength smaller than 0.02 that could be identified at the ADC(3)/cc-pVDZ level for the four conformers of n-pentane. This document can be reached through a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).
66.
J. P.
Lowe
,
Quantum Chemistry
(
Academic
,
San Diego, CA
,
1978
).

Supplementary Material

You do not currently have access to this content.