The differences in formation and structural properties of polymer networks consisting of end-linked flexible or rigid chains were studied by molecular dynamics simulation. Networks were formed from monodisperse, linear, short, flexible or rigid chains with functional end groups and a stoichiometric ratio of trifunctional cross-linkers. The rigid chains had a rodlike shape defined by an angle potential, while the flexible chains had no angle potential. In order to understand the influence of chain rigidity, all parameters of precursor chains (length, reactivity, bond potential, nonbonding potential) were the same, with the exception of the angle potential. The system density ρ, corresponding to the concentration of monomer in solvent, was varied from 0.01 to 0.11. Different network structures resulting from the different processes of network formation were observed. Simulations showed that the flexible chains created an inhomogeneous network on a large scale via microgel cluster formation, in agreement with experimental observations, whereas the rigid chains rapidly created a homogeneous network in the entire system volume without first generating microgel clusters, with the additional difference that they gave rise to mutually interpenetrating networks at the local scale.

1.
M. Y.
Kizilay
and
O.
Okay
,
Polymer
44
,
5239
(
2003
).
2.
Y.
Li
,
G.
Wang
, and
Z.
Hu
,
Macromolecules
28
,
4194
(
1995
).
3.
F.
Ikkai
and
M.
Shibayama
,
J. Polym. Sci., Part B: Polym. Phys.
43
,
617
(
2005
).
4.
E. S.
Matsuo
,
M.
Orkisz
,
S.-T.
Sun
,
Y.
Li
, and
T.
Tanaka
,
Macromolecules
27
,
6791
(
1994
).
5.
M.
Shibayama
,
T.
Norisuye
, and
F.
Ikkai
,
J. Phys. Soc. Jpn.
70
,
306
(
2001
).
6.
M.
Shibayama
,
Y.
Shirotani
,
H.
Hirose
, and
S.
Nomura
,
Macromolecules
30
,
7307
(
1997
).
7.
T.
Norisuye
,
M.
Takeda
, and
M.
Shibayama
,
Macromolecules
31
,
5316
(
1998
).
8.
M.
Takeda
,
T.
Norisuye
, and
M.
Shibayama
,
Macromolecules
33
,
2909
(
2000
).
9.
M.
Shibayama
,
Macromol. Chem. Phys.
199
,
1
(
1998
).
10.
J. P.
Gong
,
Y.
Katsuyama
,
T.
Kurosawa
, and
Y.
Osada
,
Adv. Mater. (Weinheim, Ger.)
15
,
1155
(
2003
).
11.
Y.-H.
Na
,
T.
Kurokawa
,
Y.
Katsuyama
,
H.
Tsukeshiba
,
J. P.
Gong
,
Y.
Osada
,
S.
Okabe
,
T.
Karino
, and
M.
Shibayama
,
Macromolecules
37
,
5370
(
2004
).
12.
H.
Tsukeshiba
,
M.
Huang
,
Y.-H.
Na
,
T.
Kurokawa
,
R.
Kuwabara
,
Y.
Tanaka
,
H.
Furukawa
,
Y.
Osada
, and
J. P.
Gong
,
J. Phys. Chem. B
109
,
16304
(
2005
).
13.
T.
Norisuye
,
N.
Masui
,
Y.
Kida
,
D.
Ikuta
,
E.
Kokufuta
,
S.
Ito
,
S.
Panyukov
, and
M.
Shibayama
,
Polymer
43
,
5289
(
2002
).
14.
G.
Hild
,
Prog. Polym. Sci.
23
,
1019
(
1998
).
15.
J. E.
Mark
and
J. L.
Sullivan
,
J. Chem. Phys.
66
,
1006
(
1977
).
16.
J.
Mikes
and
K.
Dusek
,
Macromolecules
15
,
93
(
1982
).
17.
Y.-K.
Leung
and
B. E.
Eichinger
,
J. Chem. Phys.
80
,
3877
(
1984
).
18.
Y.-K.
Leung
and
B. E.
Eichinger
,
J. Chem. Phys.
80
,
3885
(
1984
).
19.
H.
Tobita
,
Macromolecules
26
,
5427
(
1993
).
20.
R. D.
Groot
and
W. G. M.
Agterof
,
J. Chem. Phys.
100
,
1649
(
1994
).
21.
G. S.
Grest
,
K.
Kremer
, and
E. R.
Duering
,
Europhys. Lett.
19
,
195
(
1992
).
22.
G. S.
Grest
,
K.
Kremer
, and
E. R.
Duering
,
Physica A
194
,
330
(
1993
).
23.
E. R.
Duering
,
K.
Kremer
, and
G. S.
Grest
,
J. Chem. Phys.
101
,
8169
(
1994
).
24.
H. L.
Trautenberg
,
J.-U.
Sommer
, and
D.
Goritz
,
Macromol. Symp.
81
,
153
(
1994
).
25.
H. L.
Trautenberg
,
J.-U.
Sommer
, and
D.
Goritz
,
J. Chem. Soc., Faraday Trans.
91
,
2649
(
1995
).
26.
N.
Gilra
,
C.
Cohen
, and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
112
,
6910
(
2000
).
27.
M.
Wen
,
L. E.
Scriven
, and
A. V.
McCormick
,
Macromolecules
36
,
4140
(
2003
).
28.
A. G.
Balabanyan
,
E. Y.
Kramarenko
,
I. A.
Ronova
, and
A. R.
Khokhlov
,
Polymer
46
,
4248
(
2005
).
29.
S. M.
Aharoni
and
S. F.
Edwards
,
Macromolecules
22
,
3361
(
1989
).
30.
S. M.
Aharoni
,
Macromolecules
24
,
235
(
1991
).
31.
S. M.
Aharoni
,
Macromolecules
24
,
4286
(
1991
).
32.
S. M.
Aharoni
,
Macromolecules
25
,
1510
(
1992
).
33.
S. M.
Aharoni
,
Macromolecules
15
,
1311
(
1982
).
34.
S. M.
Aharoni
,
Macromolecules
16
,
1722
(
1983
).
35.
J.
He
,
K.
Horie
, and
R.
Yokota
,
Polymer
41
,
4793
(
2000
).
36.
J.
He
,
S.
Machida
,
H.
Kishi
,
K.
Horie
,
H.
Furukawa
, and
R.
Yokota
,
J. Polym. Sci., Part A: Polym. Chem.
40
,
2501
(
2002
).
37.
M.
Takasu
,
K.
Ono
,
N.
Ohta
, and
H.
Furukawa
,
Polymer Preprints, Japan
55
,
3721
(
2006
).
38.
P. G.
Khalatur
,
A. R.
Khokhlov
,
J. N.
Kovalenko
, and
D. A.
Mologin
,
J. Chem. Phys.
110
,
6039
(
1999
).
39.
J.
Xu
,
Y.
Tseng
, and
D.
Wirtz
,
J. Biol. Chem.
275
,
35886
(
2000
).
40.
C.
Storm
,
J. J.
Pastore
,
F. C.
MacKintosh
,
T. C.
Lubensky
, and
P. A.
Janmey
,
Nature (London)
435
,
191
(
2005
).
41.
F. C.
MacKintosh
,
J.
Käs
, and
P. A.
Janmey
,
Phys. Rev. Lett.
75
,
4425
(
1995
).
42.
D. C.
Morse
,
Phys. Rev. E
58
,
R1237
(
1998
).
43.
F.
Gittes
and
F. C.
MacKintosh
,
Phys. Rev. E
58
,
R1241
(
1998
).
44.
J.
Wilhelm
and
E.
Frey
,
Phys. Rev. Lett.
91
,
108103
(
2003
).
45.
G. S.
Grest
and
K.
Kremer
,
Phys. Rev. A
33
,
3628
(
1986
).
46.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon
,
Oxford
,
1987
), p.
73
.
47.
T.
Aoyagi
,
F.
Sawa
,
T.
Shoji
,
H.
Fukunaga
,
J.
Takimoto
, and
M.
Doi
,
Comput. Phys. Commun.
145
,
267
(
2002
).
48.
J. E.
Martin
,
J.
Wilcoxon
, and
J.
Odinek
,
Phys. Rev. A
43
,
858
(
1991
).
49.
T.
Nakayama
,
K.
Yakubo
, and
R. L.
Orbach
,
Rev. Mod. Phys.
66
,
381
(
1994
).
50.
H. J.
Naghash
and
O.
Okay
,
J. Appl. Polym. Sci.
60
,
971
(
1996
).
51.
G.
Patras
,
G. G.
Qiao
, and
D. H.
Solomon
,
Macromolecules
34
,
6369
(
2001
).
52.
N.
Ide
and
T.
Fukuda
,
Macromolecules
32
,
95
(
1999
).
You do not currently have access to this content.