A general method for the simulation of absorption (ABS) and fluorescence band shapes, resonance-Raman (rR) spectra, and excitation profiles based on the time-dependent theory of Heller is discussed. The following improvements to Heller’s theory have been made: (a) derivation of new recurrence relations for the time-dependent wave packet overlap in the case of frequency changes between the ground and electronically excited states, (b) a new series expansion that gives insight into the nature of Savin’s preresonance approximation, (c) incorporation of inhomogeneous broadening effects into the formalism at no additional computational cost, and (d) derivation of a new and simple short-time dynamics based equation for the Stokes shift that remains valid in the case of partially resolved vibrational structure. Our implementation of the time-dependent theory for the fitting of experimental spectra and the simulation of model spectra as well as the quantum mechanical calculation of the model parameters is discussed. The implementation covers all electronic structure approaches which are able to deliver ground- and excited-state energies and transition dipole moments. The technique becomes highly efficient if analytic gradients for the excited-state surface are available. In this case, the computational cost for the simultaneous prediction of ABS, fluorescence, and rR spectra is equal to that of a single excited-state geometry optimization step while the limitations of the short-time dynamics approximation are completely avoided. As a test case we discuss the well-known case of the strongly allowed 1Ag11Bu1 transition in 1,3,5 trans-hexatriene in detail using method ranging from simple single-reference treatments to elaborate multireference electronic structure approaches. At the highest computational level, the computed spectra show the best agreement that has so far been obtained with quantum chemical methods for this problem.

1.
G.
Orlandi
,
F.
Zerbetto
, and
M. Z.
Zgierski
,
Chem. Rev. (Washington, D.C.)
91
,
867
(
1991
).
2.
F.
Neese
,
T.
Petrenko
,
D.
Ganyushin
, and
G.
Olbrich
,
Coord. Chem. Rev.
251
,
288
(
2007
).
3.
H.
Torii
and
M.
Tasumi
,
J. Chem. Phys.
101
,
4496
(
1994
).
4.
J.
Neugebauer
and
B. A.
Hess
,
J. Chem. Phys.
120
,
11564
(
2004
).
5.
C.
Woywod
,
W. C.
Livingood
, and
J. H.
Frederick
,
J. Chem. Phys.
112
,
626
(
2000
).
6.
M.
Nooijen
,
Int. J. Quantum Chem.
95
,
768
(
2003
).
7.
J.
Neugebauer
,
E. J.
Baerendes
, and
M.
Nooijen
,
J. Phys. Chem. A
109
,
1168
(
2005
).
8.
F.
Negri
and
M. Z.
Zgierski
,
J. Chem. Phys.
99
,
4318
(
1993
).
9.
F.
Negri
and
M. Z.
Zgierski
,
J. Chem. Phys.
102
,
5165
(
1995
).
10.
A. M.
Mebel
,
M.
Hayashi
,
K. K.
Liang
, and
S. H.
Lin
,
J. Phys. Chem.
103
,
10674
(
1999
).
11.
J.-L.
Chang
and
Y.-T.
Cheng
,
J. Chem. Phys.
116
,
7518
(
2002
).
12.
M.
Dierksen
and
S.
Grimme
,
J. Chem. Phys.
120
,
3544
(
2004
).
13.
M.
Dierksen
and
S.
Grimme
,
J. Phys. Chem.
108
,
10225
(
2004
).
14.
A.
Warshel
and
P.
Dauber
,
J. Chem. Phys.
66
,
5477
(
1977
).
15.
F.
Zerbetto
and
M. Z.
Zgierski
,
J. Chem. Phys.
98
,
4822
(
1993
).
16.
G.
Orlandi
,
P.
Palmieri
,
R.
Tarroni
,
F.
Zerbetto
, and
M. Z.
Zgierski
,
J. Chem. Phys.
100
,
2458
(
1994
).
17.
W. J.
Buma
and
F.
Zerbetto
,
J. Chem. Phys.
103
,
10492
(
1995
).
18.
A. C.
Albrecht
,
J. Chem. Phys.
34
,
1476
(
1961
).
19.
J.
Tang
and
A. C.
Albrecht
, in
Raman Spectroscopy, Theory and Practice
, edited by
H. A.
Szymanski
(
Plenum
,
New York
,
1970
), Vol.
2
, p.
33
.
20.
C.
Manneback
,
Physica (Amsterdam)
17
,
1001
(
1951
).
21.
T. E.
Sharp
and
H. M.
Rosenstock
,
J. Chem. Phys.
41
,
3453
(
1964
).
22.
E. V.
Doktorov
,
I. A.
Malkin
, and
V. I.
Man’ko
,
J. Mol. Spectrosc.
56
,
1
(
1975
).
23.
E. V.
Doktorov
,
I. A.
Malkin
, and
V. I.
Man’ko
,
J. Mol. Spectrosc.
64
,
302
(
1977
).
24.
T. R.
Faulkner
and
F. S.
Richardson
,
J. Chem. Phys.
70
,
1201
(
1979
).
25.
H.
Kupka
and
P. H.
Cribb
,
J. Chem. Phys.
85
,
1303
(
1986
).
26.
K.
Chen
and
C.
Pei
,
Chem. Phys. Lett.
165
,
523
(
1990
).
27.
V. I.
Baranov
and
D. Y.
Zelentsov
,
J. Mol. Struct.
272
,
283
(
1992
).
28.
H.
Kikuchi
,
M.
Kubo
,
N.
Watanabe
, and
H.
Suzuki
,
J. Chem. Phys.
119
,
729
(
2003
).
29.
M.
Dierksen
and
S.
Grimme
,
J. Chem. Phys.
122
,
244101
(
2005
).
30.
F.
Santoro
,
R.
Improta
,
A.
Lami
,
J.
Bloino
, and
V.
Barone
,
J. Chem. Phys.
126
,
084509
(
2007
).
31.
R.
Berger
,
C.
Fischer
, and
M.
Klessinger
,
J. Phys. Chem. A
102
,
7157
(
1998
).
32.
R.
Borrelli
and
A.
Peluso
,
J. Chem. Phys.
125
,
194308
(
2006
).
33.
F. A.
Savin
,
Opt. Spektrosk.
19
,
555
(
1965
).
34.
F. A.
Savin
,
Opt. Spektrosk.
19
,
743
(
1965
).
35.
F. A.
Savin
,
Opt. Spektrosk.
20
,
989
(
1966
).
36.
A. B.
Myers
,
R. A.
Mathies
,
D. J.
Tannor
, and
E. J.
Heller
,
J. Chem. Phys.
77
,
3857
(
1982
).
37.
A. B.
Myers
,
R. A.
Harris
, and
R. A.
Mathies
,
J. Chem. Phys.
79
,
603
(
1983
).
38.
A. B.
Myers
and
S. P.
Crisanto
,
J. Phys. Chem.
93
,
5079
(
1989
).
39.
S.
Hassing
and
O. S.
Mortensen
,
J. Chem. Phys.
73
,
1078
(
1980
).
40.
D. C.
Blazei
and
W. L.
Peticolas
,
J. Chem. Phys.
72
,
3134
(
1980
).
41.
D. L.
Tonks
and
G. B.
Page
,
Chem. Phys. Lett.
66
,
449
(
1979
).
42.
D. L.
Tonks
and
G. B.
Page
,
J. Chem. Phys.
75
,
5694
(
1981
).
43.
P. M.
Champion
and
A. C.
Albrecht
,
Chem. Phys. Lett.
82
,
410
(
1981
).
44.
D. L.
Tonks
and
G. B.
Page
,
J. Chem. Phys.
76
,
5820
(
1982
).
45.
J. R.
Cable
and
A. C.
Albrecht
,
Chem. Phys. Lett.
84
,
1969
(
1986
).
46.
C. K.
Chan
,
G. B.
Page
,
D. L.
Tonks
,
O.
Brafman
,
B.
Khodadoost
, and
C. T.
Walker
,
J. Chem. Phys.
82
,
4813
(
1985
).
47.
E. J.
Heller
,
J. Chem. Phys.
62
,
1544
(
1975
).
48.
E. J.
Heller
,
J. Chem. Phys.
68
,
2066
(
1978
).
49.
S.-Y.
Lee
and
E. J.
Heller
,
J. Chem. Phys.
71
,
4777
(
1979
).
50.
S.
Mukamel
,
S.
Abe
,
Y. J.
Yan
, and
R.
Islampour
,
J. Phys. Chem.
89
,
201
(
1985
).
51.
Y. J.
Yan
and
S.
Mukamel
,
J. Chem. Phys.
85
,
5908
(
1986
).
52.
K. C.
Kulander
and
E. J.
Heller
,
J. Chem. Phys.
69
,
2439
(
1978
).
53.
D. J.
Tannor
and
E. J.
Heller
,
J. Chem. Phys.
77
,
202
(
1982
).
54.
E. J.
Heller
,
R. L.
Sundberg
, and
T.
David
,
J. Phys. Chem.
86
,
1822
(
1982
).
55.
A. B.
Myers
and
R. A.
Mathies
, in
Biological Applications of Raman Spectroscopy
, edited by
T. G.
Spiro
(
Wiley
,
New York
,
1987
), Vol.
2
, p.
1
.
56.

Homogeneous broadening is accounted for in the simplest possible way by the phenomenological factor eΓt which results in Lorentzian line shapes for absorption bands and rR excitation profiles. In addition to lifetime effects this factor accounts also for the intermolecular and solvent contributions that fluctuate quickly on the Raman time scale, as well as for contributions from weakly displaced modes that are neglected in the analysis.

57.
58.

In Eq. (31) we have separated the phase-factor eiE0nt from the time-dependent wave packet by making a substitution in(t)in(t)eiE0nt in order to perform the integration over E0n explicitly.

59.
B.
DiBartolo
, in
Optical Interactions in Solids
(
Wiley
,
New York
,
1968
).
60.
F.
Neese
, ORCA, an ab initio, density functional and semiempirical program package, University of Bonn, Bonn, Germany,
2007
.
61.
W. H.
Press
,
B. P.
Flannery
,
S. A.
Teukolsky
, and
W. T.
Vetterling
,
Numerical Recipes in C
(
Cambridge University Press
,
Cambridge
,
1988
).
62.
P.
Hildebrandt
,
K.
Nemeth
,
C.
Kneip
, and
F.
Mark
,
Biophys. J.
74
,
A133
(
1998
).
63.
C.
Kneip
,
P.
Hildebrandt
,
K.
Nemeth
,
F.
Mark
, and
K.
Schaffner
,
Chem. Phys. Lett.
311
,
479
(
1999
).
64.
D. E.
Morris
and
W. H.
Woodruff
,
J. Phys. Chem.
89
,
5795
(
1985
).
65.
R. M.
Gavin
and
S. A.
Rice
,
J. Chem. Phys.
60
,
3231
(
1974
).
66.
D. G.
Leopold
,
R. D.
Pendley
,
J. L.
Roebber
,
R. J.
Hemley
, and
V. J.
Vaida
,
J. Chem. Phys.
81
,
4218
(
1984
).
67.
W. M.
Flicker
,
O. A.
Mosher
, and
A.
Kuppermann
,
Chem. Phys. Lett.
45
,
492
(
1977
).
68.
A.
Warshel
and
M.
Karplus
,
Chem. Phys. Lett.
17
,
7
(
1972
).
69.
A.
Warshel
and
M.
Karplus
,
J. Am. Chem. Soc.
94
,
5612
(
1972
).
70.
R. J.
Hemley
,
A. C.
Lasaga
,
V.
Vaida
, and
M.
Karplus
,
J. Chem. Phys.
92
,
945
(
1988
).
71.
M. A. C.
Nascimento
and
W. A.
Goddard
 III
,
Chem. Phys. Lett.
60
,
197
(
1979
).
72.
M. A. C.
Nascimento
and
W. A.
Goddard
 III
,
Chem. Phys.
53
,
265
(
1980
).
73.
L.
Serrano-Andres
,
M.
Merchan
,
I.
Nebot-Gill
,
R.
Lindh
, and
B. O.
Roos
,
J. Chem. Phys.
98
,
3151
(
1993
).
74.
C.
Woywod
,
W. C.
Livingood
, and
J. H.
Frederick
,
J. Chem. Phys.
112
,
613
(
2000
).
75.
M.
Boggio-Pasqua
,
M. J.
Bearpark
,
M.
Klene
, and
M. A.
Robb
,
J. Chem. Phys.
120
,
7849
(
2004
).
76.
J.
Catalán
and
J. L. G.
Paz
,
J. Chem. Phys.
124
,
034306
(
2006
).
77.
F.
Neese
,
J. Chem. Phys.
122
,
034107
(
2005
).
78.
A.
Schäfer
,
C.
Huber
, and
R.
Ahlrichs
,
J. Chem. Phys.
100
,
5829
(
1994
).
80.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
81.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
82.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
83.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
84.
J.
Neugebauer
and
B. A.
Hess
,
J. Chem. Phys.
118
,
7215
(
2003
).
85.
S.
Grimme
,
M.
Parac
, and
M.
Waltezke
,
Chem. Phys. Lett.
334
,
99
(
2001
).
86.
M. J.
Harding
,
S. F.
Mason
,
D. J.
Robbins
, and
A. J.
Thomson
,
J. Chem. Soc. A
19
,
3058
(
1971
).
87.
S.
Grimme
and
M.
Waletzke
,
Phys. Chem. Chem. Phys.
2
,
2075
(
2000
).
88.
E. R.
Davidson
and
R.
Yarzecki
, in
Recent Advances in Multireference Methods
, edited by
C. E.
Hirao
(
World Scientific
,
Singapore
,
1999
), p.
31
.
89.
G.
Hirsch
,
P. J.
Bruna
,
S. D.
Peyerimhoff
, and
R. J.
Buenker
,
Chem. Phys. Lett.
52
,
442
(
1977
).
90.
P. J.
Bruna
,
S. D.
Peyerimhoff
, and
R. J.
Buenker
,
Chem. Phys. Lett.
72
,
278
(
1980
).
91.
R. J.
Gdanitz
and
R.
Ahlrichs
,
Chem. Phys. Lett.
143
,
413
(
1988
).
92.
J.
Miralles
,
O.
Castell
,
R.
Caballol
, and
J. P.
Malrieu
,
Chem. Phys. Lett.
172
,
33
(
1993
).
93.
V. M.
Garcia
,
O.
Castell
,
R.
Caballol
, and
J. P.
Malrieu
,
Chem. Phys. Lett.
238
,
222
(
1995
).
94.
F.
Neese
,
J. Chem. Phys.
119
,
9428
(
2003
).
95.
T.
Petrenko
,
K.
Ray
,
K.
Weighardt
, and
F.
Neese
,
J. Am. Chem. Soc.
128
,
4422
(
2006
).
96.
J. C.
Schöneboom
,
F.
Neese
, and
W.
Thiel
,
J. Am. Chem. Soc.
127
,
5840
(
2005
).
97.
J.
Chalupsky
,
F.
Neese
,
E. I.
Solomon
,
U.
Ryde
, and
L.
Rulisek
,
Inorg. Chem.
45
,
11051
(
2006
).
98.
A. B.
Myers
,
B.
Li
, and
X.
Ci
,
J. Chem. Phys.
89
,
1876
(
1988
).
99.
K. T.
Schomacker
and
P. M.
Champion
,
J. Chem. Phys.
84
,
5314
(
1986
).
100.
A.
Hazra
,
H. H.
Chang
, and
M.
Nooijen
,
J. Chem. Phys.
12
,
2125
(
2004
).
101.
A.
Hazra
and
M.
Nooijen
,
Phys. Chem. Chem. Phys.
7
,
1759
(
2005
).
102.
G.
Herzberg
,
Spectra of Diatomic Molecules
(
Krieger
,
Malabar, FL
,
1989
).
103.
J. L.
Wootton
and
J. I.
Zink
,
J. Phys. Chem.
99
,
7251
(
1995
).
104.
A. B.
Myers
,
Chem. Rev. (Washington, D.C.)
96
,
911
(
1996
).
105.
L. M.
Markham
and
B. S.
Hudson
,
J. Phys. Chem.
100
,
2731
(
1996
).
106.
P. G.
Szalay
and
G.
Fogarasi
,
Chem. Phys. Lett.
270
,
406
(
1997
).
107.
J.
Neugebauer
,
E. J.
Baerendes
,
E. V.
Efremov
,
F.
Ariese
, and
C.
Gooijer
,
J. Phys. Chem. A
109
,
2100
(
2005
).
You do not currently have access to this content.