Existing density functional theory (DFT) methods are typically very effective in capturing dynamic correlation, but run into difficulty treating near-degenerate systems where static correlation becomes important. In this work, we propose a configuration interaction (CI) method that allows one to use a multireference approach to treat static correlation but incorporates DFT’s efficacy for the dynamic part as well. The new technique uses localized charge or spin states built by a constrained DFT approach to construct an active space in which the effective Hamiltonian matrix is built. These local configurations have significantly less static correlation compared to their delocalized counterparts and possess an essentially constant amount of self-interaction error. Thus their energies can be reliably calculated by DFT with existing functionals. Using a small number of local configurations as different references in the active space, a simple CI step is then able to recover the static correlation missing from the localized states. Practical issues of choosing configurations and adjusting constraint values are discussed, employing as examples the ground state dissociation curves of H2+, H2, and LiF. Excellent results are obtained for these curves at all interatomic distances, which is a strong indication that this method can be used to accurately describe bond breaking and forming processes.

1.
W. J.
Hehre
,
L.
Radom
,
P. R.
Schleyer
, and
J. A.
Pople
,
Ab initio Molecular Orbital Theory
(
Wiley
,
New York
,
1986
).
2.
R.
Shepard
, in
Advances in Chemical physics: Ab initio Methods in Quantum Chemistry II
, edited by
K. P.
Lawley
(
Wiley
,
New York
,
1987
), Vol.
69
, p.
63
.
3.
R. J.
Bartlett
and
J. F.
Stanton
,
Reviews in Computational Chemistry
(
VCH
,
New York
,
1994
), Vol.
5
, pp.
65
169
.
4.
T. D.
Crawford
and
H. F.
Schaefer III
,
Reviews in Computational Chemistry
(
VCH
,
New York
,
2000
), Vol.
14
, pp.
33
136
.
5.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
6.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
7.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
New York
,
1989
).
9.
B. G.
Johnson
,
P. M. W.
Gill
, and
J. A.
Pople
,
J. Chem. Phys.
98
,
5612
(
1993
).
10.
W.
Kohn
,
A. D.
Becke
, and
R. G.
Parr
,
J. Phys. Chem.
100
,
12974
(
1996
).
11.
W.
Koch
and
M. C.
Holthausen
,
A Chemist’s Guide to Density Functional Theory
(
Wiley VCH
,
Weinheim
,
2001
).
12.
A. D.
Becke
,
J. Chem. Phys.
122
,
064101
(
2005
).
13.
J. C.
Slater
,
J. B.
Mann
,
T. M.
Wilson
, and
J. H.
Wood
,
Phys. Rev.
184
,
672
(
1969
).
14.
M.
Filatov
and
S.
Shaik
,
Chem. Phys. Lett.
304
,
429
(
1999
).
15.
P. R. T.
Schipper
,
O. V.
Gritsenko
, and
E. J.
Baerends
,
J. Chem. Phys.
111
,
4056
(
1999
).
16.
Y.
Shao
,
M.
Head-Gordon
, and
A. I.
Krylov
,
J. Chem. Phys.
118
,
4807
(
2003
).
17.
P.
Borowski
,
K.
Jordan
,
J.
Nichols
, and
P.
Nachtigall
,
Theor. Chem. Acc.
99
,
135
(
1998
).
18.
J.
Gräfenstein
and
D.
Cremer
,
Mol. Phys.
103
,
279
(
2005
).
19.
W.
Wu
and
S.
Shaik
,
Chem. Phys. Lett.
301
,
37
(
1999
).
20.
T.
Leininger
,
H.
Stoll
,
H.-J.
Werner
, and
A.
Savin
,
Chem. Phys. Lett.
275
,
151
(
1997
).
21.
S.
Grimme
and
M.
Waletzke
,
J. Chem. Phys.
111
,
5645
(
1999
).
22.
R.
Neumann
,
R. H.
Bobes
, and
N.
Handy
,
Mol. Phys.
87
,
1
(
1996
).
23.
Q.
Wu
and
T.
Van Voorhis
,
Phys. Rev. A
72
,
024502
(
2005
).
24.
Q.
Wu
and
T.
Van Voorhis
,
J. Chem. Theory Comput.
2
,
765
(
2006
).
25.
M.
Fuchs
,
Y. M.
Niquet
,
X.
Gonze
, and
K.
Burke
,
J. Chem. Phys.
122
,
094116
(
2005
).
26.
T.
Bally
and
G. N.
Sastry
,
J. Phys. Chem. A
101
,
7923
(
1997
).
27.
J. P.
Perdew
, in
Density Functional Methods in Physics
, edited by
R. M.
Dreizler
(
Plenum
,
New York
,
1985
), pp.
265
308
.
28.
A. D.
Dutoi
and
M.
Head-Gordon
,
Chem. Phys. Lett.
422
,
230
(
2006
).
29.
A.
Ruzsinszky
,
J. P.
Perdew
,
G. I.
Csonka
,
O. A.
Vydrov
, and
G. E.
Scuseria
,
J. Chem. Phys.
125
,
194112
(
2006
).
30.
O.
Gunnarsson
and
B. I.
Lundqvist
,
Phys. Rev. B
13
,
4274
(
1976
).
31.
J. P.
Perdew
,
A.
Savin
, and
K.
Burke
,
Phys. Rev. A
51
,
4531
(
1995
).
32.
P. H.
Dederichs
,
S.
Blügel
,
R.
Zeller
, and
H.
Akai
,
Phys. Rev. Lett.
53
,
2512
(
1984
).
33.
J.
Behler
,
B.
Delley
,
S.
Lorenz
,
K.
Reuter
, and
M.
Scheffler
,
Phys. Rev. Lett.
94
,
036104
(
2005
).
34.
I.
Rudra
,
Q.
Wu
, and
T.
Van Voorhis
,
J. Chem. Phys.
124
,
024103
(
2006
).
35.
Q.
Wu
and
T.
Van Voorhis
,
J. Chem. Phys.
125
,
164105
(
2006
).
36.
J.
Behler
,
B.
Delley
,
K.
Reuter
, and
M.
Scheffler
,
Phys. Rev. B
75
,
115409
(
2007
).
37.
E. R.
Davidson
and
A. A.
Jarzecki
, in
Recent Advances in Multireference Methods
, edited by
H.
Kirao
(
World Scientific
,
Singapore
,
1990
), pp.
31
63
.
38.
M. R.
Hoffmann
, in
Modern Electronic Structure Theory
, edited by
D. R.
Yarkony
(
World Scientific
,
Singapore
,
1995
), Vol.
2
, pp.
1166
1190
.
39.
W. D.
Laidig
,
P.
Saxe
, and
R. J.
Bartlett
,
J. Chem. Phys.
86
,
887
(
1987
).
40.
T.
Yanai
and
G. K.-L.
Chan
,
J. Chem. Phys.
124
,
194106
(
2006
).
41.
J.
Gerratt
,
D. L.
Cooper
,
P. B.
Karadakov
, and
M.
Raimondi
,
Chem. Soc. Rev.
26
,
87
(
1997
).
42.
T.
Thorsteinsson
,
D. L.
Cooper
,
J.
Gerratt
,
P. B.
Karadakov
, and
M.
Raimondi
,
Theor. Chem. Acc.
93
,
343
(
1996
).
43.
T.
Thorsteinsson
and
D. L.
Cooper
,
Theor. Chem. Acc.
94
,
233
(
1996
).
44.
J. P.
Perdew
and
M.
Levy
,
Phys. Rev. B
56
,
16021
(
1997
).
45.
Y.
Zhang
and
W.
Yang
,
J. Chem. Phys.
109
,
2604
(
1998
).
46.
J.
Grafenstein
,
J. Chem. Phys.
120
,
524
(
2004
).
47.
M.
Lundberg
and
P. E. M.
Siegbahn
,
J. Chem. Phys.
122
,
224103
(
2005
).
48.
A. D.
Becke
,
J. Chem. Phys.
88
,
2547
(
1988
).
49.
F. L.
Hirshfeld
,
Theor. Chim. Acta
44
,
129
(
1977
).
50.
R. G.
Parr
,
P. W.
Ayers
, and
R. F.
Nalewajski
,
J. Phys. Chem. A
109
,
3957
(
2005
).
51.
C. F.
Guerra
,
J.-W.
Handgraaf
,
E. J.
Baerends
, and
F. M.
Bickelhaupt
,
J. Comput. Chem.
25
,
189
(
2003
).
52.
Y.
Shao
,
L.
Fusti-Molnar
,
Y.
Jung
,
J.
Kussmann
,
C.
Ochsenfeld
,
S. T.
Brown
,
A. T. B.
Gilbert
,
L. V.
Slipchenko
,
S. V.
Levchenko
,
D. P.
O’Neill
, et al.,
Phys. Chem. Chem. Phys.
8
,
3172
(
2006
).
53.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
54.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
55.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
56.
Q.
Wu
and
T.
Van Voorhis
,
J. Phys. Chem. A
110
,
9212
(
2006
).
57.
G. D.
Purvis
 III
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
58.
C. D.
Sherrill
,
A. I.
Krylov
,
E. F. C.
Byrd
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
4171
(
1998
).
59.
S.
Gwaltney
and
M.
Head-Gordon
,
Chem. Phys. Lett.
323
,
21
(
2000
).
60.
Y.
Zhao
,
N. E.
Schultz
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
2
,
364
(
2006
).
61.
O. A.
Vydrov
,
J.
Heyd
,
A. V.
Krukau
, and
G. E.
Scuseria
,
J. Chem. Phys.
125
,
074106
(
2006
).
62.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
,
J. Chem. Phys.
124
,
091102
(
2006
).
63.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
,
J. Chem. Phys.
126
,
191109
(
2007
).
64.
N. C.
Handy
and
H. F.
Schaefer
 III
,
J. Chem. Phys.
81
,
5031
(
1984
).
You do not currently have access to this content.