In order to elucidate the difference between nitramine energetic materials, such as RDX (1,3,5-trinitro-1,3,5-triazacyclohexane), HMX (1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane), and CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane), and their nonenergetic model systems, including 1,4-dinitropiperazine, nitropiperidine, nitropyrrolidine, and dimethylnitramine, both nanosecond mass resolved excitation spectroscopy and femtosecond pump-probe spectroscopy in the UV spectral region have been employed to investigate the mechanisms and dynamics of the excited electronic state photodissociation of these materials. The NO molecule is an initial decomposition product of all systems. The NO molecule from the decomposition of energetic materials displays cold rotational and hot vibrational spectral structures. Conversely, the NO molecule from the decomposition of model systems shows relatively hot rotational and cold vibrational spectra. In addition, the intensity of the NO ion signal from energetic materials is proportional to the number of nitramine functional groups in the molecule. Based upon experimental observations and theoretical calculations of the potential energy surface for these systems, we suggest that energetic materials dissociate from ground electronic states after internal conversion from their first excited states, and model systems dissociate from their first excited states. In both cases a nitro-nitrite isomerization is suggested to be part of the decomposition mechanism. Parent ions of dimethylnitramine and nitropyrrolidine are observed in femtosecond experiments. All the other molecules generate NO as a decomposition product even in the femtosecond time regime. The dynamics of the formation of the NO product is faster than 180fs, which is equivalent to the time duration of our laser pulse.

1.
F. J.
Owens
and
J.
Sharma
,
J. Appl. Phys.
51
,
1494
(
1980
).
2.
S.
Bulusu
,
D. I.
Weinstein
,
J. R.
Autera
, and
R. W.
Velicky
,
J. Phys. Chem.
90
,
4121
(
1986
).
3.
J. J.
Dick
,
R. N.
Mulford
,
W. J.
Spencer
,
D. R.
Pettit
,
E.
Garcia
, and
D. C.
Shaw
,
J. Appl. Phys.
70
,
3572
(
1991
).
4.
J. C.
Oxley
,
A. B.
Kooh
,
R.
Szekeres
, and
W.
Zheng
,
J. Phys. Chem.
98
,
7004
(
1994
).
5.
W.
Fickett
and
W. C.
Davis
,
Detonation
(
University of California Press
,
Berkeley
,
1979
).
6.
F. H.
Ree
,
J. Chem. Phys.
81
,
1251
(
1984
).
7.
Y.
Kohno
,
K.
Ueda
, and
A.
Imamura
,
J. Phys. Chem.
100
,
4701
(
1996
).
8.
D. C.
Sorescu
,
B. M.
Rice
, and
D. L.
Thompson
,
J. Phys. Chem. B
102
,
6692
(
1998
).
9.
C.
Capellos
,
S.
Lee
,
S.
Bulusu
, and
L.
Gams
,
Advances in Chemical Reaction Dynamics
(
Reidel
,
Dordrecht
,
1986
).
10.
H.
Zuckermann
,
G. D.
Greenblatt
, and
Y.
Haas
,
J. Phys. Chem.
91
,
5159
(
1987
).
11.
C.
Capellos
,
P.
Papagiannakopoulos
, and
Y.-L.
Liang
,
Chem. Phys. Lett.
164
,
533
(
1989
).
12.
X. S.
Zhao
,
E. J.
Hintsa
, and
Y. T.
Lee
,
J. Chem. Phys.
88
,
801
(
1988
).
13.
H. M.
Windawi
,
S. P.
Varma
,
C. B.
Cooper
, and
F.
Williams
,
J. Appl. Phys.
47
,
3418
(
1976
).
14.
J.
Schanda
,
B.
Baron
, and
F.
Williams
,
Acta Tech. Acad. Sci. Hung.
80
,
185
(
1975
).
15.
J.
Schanda
,
B.
Baron
, and
F.
Williams
,
J. Lumin.
9
,
338
(
1974
).
16.
S. P.
Varma
and
F.
Williams
,
J. Chem. Phys.
59
,
912
(
1973
).
17.
R. B.
Hall
and
F.
Williams
,
J. Chem. Phys.
58
,
1036
(
1973
).
18.
F.
Williams
,
Adv. Chem. Phys.
21
,
289
(
1971
).
19.
A. N.
Dremin
,
V. Y.
Klimenko
,
O. N.
Davidoua
, and
T. A.
Zolodeva
,
Proceedings of the 9th Symposium On Detonation
, Portland Oegon,
1989
, p.
319
.
20.
J.
Sharma
,
B. C.
Beard
, and
M.
Chaykovsky
,
J. Phys. Chem.
95
,
1209
(
1991
).
21.
J.
Sharma
,
J. W.
Forbes
,
C. S.
Coffey
, and
T. P.
Liddiard
,
J. Phys. Chem.
91
,
5139
(
1987
).
22.
J.
Sharma
,
APS Topical Meeting on Shocks in Energetic Materials
, Williamsburg VA,
1991
.
23.
H. S.
Im
and
E. R.
Bernstein
,
J. Chem. Phys.
113
,
7911
(
2000
).
24.
Y. Q.
Guo
,
M.
Greenfield
, and
E. R.
Bernstein
,
J. Chem. Phys.
122
,
244310
(
2005
).
25.
M.
Greenfield
,
Y. Q.
Guo
, and
E. R.
Bernstein
,
Chem. Phys. Lett.
430
,
277
(
2006
).
26.
B. M.
Rice
and
J.
Hare
,
Thermochim. Acta
384
,
377
(
2002
).
27.
G.
Zhou
,
J.
Wang
,
W.-D.
He
,
N.-B.
Wong
,
A.
Tian
, and
W.-K.
Li
,
J. Mol. Struct.: THEOCHEM
273
,
589
(
2002
).
28.
A. T.
Nielsen
,
A. P.
Chafin
,
S. L.
Christian
,
D. W.
Moore
,
M. P.
Nadler
,
R. A.
Nissan
,
D. J.
Vanderah
,
R. D.
Gilardi
,
C. F.
George
, and
J. L.
Flippen-Anderson
,
Tetrahedron
54
,
11793
(
1998
).
29.
J.
Cabalo
and
R.
Sausa
,
Appl. Opt.
44
,
1084
(
2005
).
30.
S.
Okovytyy
,
Y.
Kholod
,
M.
Qasim
,
H.
Fredrickson
, and
J.
Leszczynski
,
J. Phys. Chem. A
109
,
2964
(
2005
).
31.
M.
Foltin
,
G. J.
Stueber
, and
E. R.
Bernstein
,
J. Chem. Phys.
111
,
9577
(
1999
).
32.
M.
Foltin
,
G. J.
Stueber
, and
E. R.
Bernstein
,
J. Chem. Phys.
114
,
8971
(
2001
).
33.
G. P.
Wirtz
,
S.
Brown
, and
W. M.
Kriven
,
Mater. Manuf. Processes
6
,
87
(
1991
).
34.
P.
Kurze
,
W.
Krysmann
,
J.
Schreckenbach
,
T.
Schwarz
, and
K.
Rabending
,
Cryst. Res. Technol.
22
,
53
(
1987
).
35.
W.
Krysmann
,
P.
Kurze
,
K.-H.
Dittrich
, and
H. G.
Schneider
,
Cryst. Res. Technol.
19
,
973
(
1984
).
36.
K.-H.
Dittrich
,
W.
Krysmann
,
P.
Kurze
, and
H. G.
Schneider
,
Cryst. Res. Technol.
19
,
93
(
1984
).
37.
P.
Carcabal
,
R. T.
Kroemer
,
L. C.
Snoek
,
J. P.
Simons
,
J. M.
Bakker
,
I.
Compagnon
,
G.
Meijer
, and
G. V.
Helden
,
Phys. Chem. Chem. Phys.
6
,
4546
(
2004
).
38.
L. C.
Snoek
,
T. V.
Mourik
, and
J. P.
Simons
,
Mol. Phys.
101
,
1239
(
2003
).
39.
R.
Trebino
,
Frequency-Resolved Optical Gating: The Measurement of Ultrafast Laser Pulses
(
Kluwer Academic
,
Boston
,
2000
).
40.
M.
Hippler
and
J.
Pfab
,
Chem. Phys. Lett.
243
,
500
(
1995
).
41.
G.
Herzberg
,
Spectra of Diatomic Molecules
(
Van Nostrand
,
New York
,
1950
).
42.
J.
Soto
,
J. F.
Arenas
,
J. C.
Otero
, and
D.
Pelaez
,
J. Phys. Chem. A
110
,
8221
(
2006
).
43.
H. S.
Im
and
E. R.
Bernstein
,
J. Phys. Chem. A
106
,
7565
(
2002
).
44.
M. J.
McQuaid
,
A. W.
Miziolek
,
R. C.
Sausa
, and
C. N.
Merrow
,
J. Phys. Chem.
95
,
2713
(
1991
).
45.
J. C.
Mialocq
and
J. C.
Stephenson
,
Chem. Phys. Lett.
123
,
390
(
1986
).
You do not currently have access to this content.