Double-hybrid density functionals are based on a mixing of standard generalized gradient approximations (GGAs) for exchange and correlation with Hartree-Fock (HF) exchange and a perturbative second-order correlation part (PT2) that is obtained from the Kohn-Sham (GGA) orbitals and eigenvalues. This virtual orbital-dependent functional (dubbed B2PLYP) contains only two empirical parameters that describe the mixture of HF and GGA exchange (ax) and of the PT2 and GGA correlation (ac), respectively. Extensive testing has recently demonstrated the outstanding accuracy of this approach for various ground state problems in general chemistry applications. The method is extended here without any further empirical adjustments to electronically excited states in the framework of time-dependent density functional theory (TD-DFT) or the closely related Tamm-Dancoff approximation (TDA-DFT). In complete analogy to the ground state treatment, a scaled second-order perturbation correction to configuration interaction with singles (CIS(D)) wave functions developed some years ago by Head-Gordon et al [Chem. Phys. Lett.219, 21 (1994)] is computed on the basis of density functional data and added to the TD(A)-DFT∕GGA excitation energy. The method is implemented by applying the resolution of the identity approximation and the efficiency of the code is discussed. Extensive tests for a wide variety of molecules and excited states (of singlet, triplet, and doublet multiplicities) including electronic spectra are presented. In general, rather accurate excitation energies (deviations from reference data typically <0.2eV) are obtained that are mostly better than those from standard functionals. Still, systematic errors are obtained for Rydberg (too low on average by about 0.3eV) and charge-transfer transitions but due to the relatively large ax parameter (0.53), B2PLYP outperforms most other functionals in this respect. Compared to conventional HF-based CIS(D), the method is more robust in electronically complex situations due to the implicit account of static correlation effects by the GGA parts. The (D) correction often works in the right direction and compensates for the overestimation of the transition energy at the TD level due to the elevated fraction of HF exchange in the hybrid GGA part. Finally, the limitations of the method are discussed for challenging systems such as transition metal complexes, cyanine dyes, and multireference cases.

1.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
2.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
Oxford
,
1989
).
3.
W.
Koch
and
M. C.
Holthausen
,
A Chemist’s Guide to Density Functional Theory
(
Wiley-VCH
,
New York
,
2001
).
4.
E. K. U.
Gross
,
J. F.
Dobson
, and
M.
Petersilka
, in
Density Functional Theory II
,
Springer Series in Topics in Current Chemistry
, edited by
R. F.
Nalewajski
(
Springer
,
Heidelberg
,
1996
).
5.
E. M. E.
Casida
, in
Recent Advances in Density Functional Methods
, edited by
D. P.
Chong
(
World Scientific
,
Singapore
,
1995
).
6.
R.
Bauernschmitt
and
R.
Ahlrichs
,
Chem. Phys. Lett.
256
,
454
(
1996
).
7.
F.
Furche
,
J. Chem. Phys.
114
,
5982
(
2001
).
8.
M. A. L.
Marques
,
C. A.
Ulrich
,
F.
Nagueira
,
A.
Rubio
,
K.
Burke
, and
E. K. U.
Gross
,
Time-Dependent Density Functional Theory
,
Lecture Notes in Physics
Vol.
706
(
Springer
,
Berlin
,
2006
).
9.
S.
Grimme
, in
Reviews in Computational Chemistry
, edited by
K. B.
Lipkowitz
and
D. B.
Boyd
(
Wiley-VCH
,
New York
,
2004
), Vol.
20
, pp.
153
218
.
10.
J.
Schirmer
and
A.
Dreuw
,
Phys. Rev. A
75
,
022513
(
2006
).
11.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
12.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
).
13.
F.
Neese
,
J. Biol. Inorg. Chem.
11
,
702
(
2006
).
14.
M. E.
Casida
,
C.
Jamorski
,
K. C.
Casida
, and
D. R.
Salahub
,
J. Chem. Phys.
108
,
4439
(
1998
).
15.
N. C.
Handy
and
D.
Tozer
,
J. Chem. Phys.
109
,
10180
(
1998
).
16.
R.
van Leeuwen
and
E. J.
Baerends
,
Phys. Rev. A
49
,
2421
(
1994
).
17.
D. J.
Tozer
,
R. D.
Amos
,
N. C.
Handy
, and
B. O.
Roos
,
Mol. Phys.
97
,
859
(
1999
).
18.
A.
Dreuw
,
J. L.
Weisman
, and
M.
Head-Gordon
,
J. Chem. Phys.
119
,
2943
(
2003
).
19.
H.
Iikura
,
T.
Tsuneda
,
T.
Yanai
, and
K.
Hirao
,
J. Chem. Phys.
115
,
3540
(
2001
).
20.
S.
Grimme
and
M.
Parac
,
ChemPhysChem
4
,
292
(
2003
).
21.
M.
Parac
and
S.
Grimme
,
Chem. Phys.
292
,
11
(
2003
).
22.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
23.
M.
Dierksen
and
S.
Grimme
,
J. Phys. Chem. A
108
,
10225
(
2004
).
24.
F. D.
Sala
and
A.
Görling
,
Int. J. Quantum Chem.
91
,
131
(
2003
).
25.
Y.
Zhao
and
D. G.
Truhlar
,
J. Phys. Chem. A
110
,
13126
(
2007
).
26.
M.
Atanasov
,
C.
Daul
, and
C.
Rauzy
,
Struct. Bonding (Berlin)
106
,
97
(
2004
).
27.
N. T.
Maitra
,
F.
Zhang
,
R. J.
Cave
, and
K.
Burke
,
J. Chem. Phys.
120
,
5932
(
2004
).
28.
D.
Bokhan
and
R. J.
Bartlett
,
Phys. Rev. A
73
,
022502
(
2006
).
29.
S.
Grimme
,
J. Chem. Phys.
124
,
034108
(
2006
).
30.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
31.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
32.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
33.
Y.
Zhao
,
B. J.
Lynch
, and
D. G.
Truhlar
,
J. Phys. Chem. A
108
,
4786
(
2004
).
34.
J. G.
Ángyán
,
I. C.
Gerber
,
A.
Savin
, and
J.
Toulouse
,
Phys. Rev. A
72
,
012510
(
2005
).
35.
P.
Mori-Sanchez
,
Q.
Wu
, and
W.
Yang
,
J. Chem. Phys.
123
,
062204
(
2005
).
36.
R. J.
Bartlett
,
I.
Grabowski
,
S.
Hirata
, and
S.
Ivanov
,
J. Chem. Phys.
122
,
034104
(
2005
).
37.
I. V.
Schweigert
,
V. F.
Lotrich
, and
R. J.
Bartlett
,
J. Chem. Phys.
125
,
104108
(
2006
).
38.
C.
Tuma
and
J.
Sauer
,
Phys. Chem. Chem. Phys.
8
,
3955
(
2006
).
39.
T.
Schwabe
and
S.
Grimme
,
Phys. Chem. Chem. Phys.
9
,
3397
(
2007
).
40.
S.
Grimme
and
T.
Schwabe
,
Phys. Chem. Chem. Phys.
8
,
4398
(
2006
).
41.
S.
Grimme
,
C.
Mück-Lichtenfeld
,
E.-U.
Würthwein
,
A. W.
Ehlers
,
T. P. M.
Goumans
, and
K.
Lammertsma
,
J. Phys. Chem. A
110
,
2583
(
2006
).
42.
S.
Grimme
,
M.
Steinmetz
, and
M.
Korth
,
J. Org. Chem.
72
,
2118
(
2007
).
43.
M.
Piacenza
,
I.
Hyla-Kryspin
, and
S.
Grimme
,
J. Comput. Chem.
28
,
2275
(
2007
).
44.
S.
Ye
and
F.
Neese
,
J. Inorg. Chem.
(submitted).
45.
F.
Neese
,
T.
Schwabe
, and
S.
Grimme
,
J. Chem. Phys.
126
,
124115
(
2007
).
46.
M.
Head-Gordon
,
R. J.
Rico
,
M.
Oumi
, and
T. J.
Lee
,
Chem. Phys. Lett.
219
,
21
(
1994
).
47.
S.
Hirata
and
M.
Head-Gordon
,
Chem. Phys. Lett.
314
,
291
(
1999
).
48.
A. D.
McLachlan
and
M. A.
Ball
,
Rev. Mod. Phys.
36
,
844
(
1964
).
49.
A.
Dreuw
and
M.
Head-Gordon
,
Chem. Rev. (Washington, D.C.)
105
,
4009
(
2005
).
50.
S.
Grimme
,
Chem. Phys. Lett.
259
,
128
(
1996
).
51.
J. B.
Foresman
,
M.
Head-Gordon
,
J. A.
Frisch
,
J. A.
Pople
,
M. J.
Frisch
,
J. Phys. Chem.
96
,
135
(
1992
).
52.
S.
Hirata
,
J. Chem. Phys.
122
,
094105
(
2005
).
53.
Y. M.
Rhee
and
M.
Head-Gordon
,
J. Phys. Chem. A
111
,
5314
(
2007
).
54.
Y.
Mochizuki
,
K.
Tanaka
,
K.
Yamashita
,
T.
Ishikawa
,
T.
Nakano
,
S.
Amari
,
K.
Segawa
,
T.
Murase
,
H.
Tokiwa
, and
M.
Sakurai
,
Theor. Chem. Acc.
117
,
541
(
2007
).
55.
P.
Pulay
,
S.
Saebø
, and
W.
Meyer
,
J. Chem. Phys.
81
,
1901
(
1984
).
56.
M.
Oumi
,
D.
Maurice
, and
M.
Head-Gordon
,
Spectrochim. Acta, Part A
55
,
525
(
1999
).
57.
D.
Maurice
,
M.
Oumi
,
T. J.
Lee
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
279
,
151
(
1997
).
58.
S.
Grimme
and
E. I.
Izgorodina
,
Chem. Phys.
305
,
223
(
2004
).
59.
M.
Head-Gordon
,
M.
Oumi
, and
D.
Maurice
,
Mol. Phys.
96
,
593
(
1999
).
60.
C.
Hättig
and
F.
Weigend
,
J. Chem. Phys.
113
,
5154
(
2000
).
61.
O.
Christiansen
,
H.
Koch
, and
P.
Jørgensen
,
Chem. Phys. Lett.
243
,
409
(
1995
).
62.
J.
Schirmer
,
Phys. Rev. A
26
,
2395
(
1982
).
63.
O.
Christiansen
,
K. L.
Bak
,
H.
Koch
, and
S. P. A.
Sauer
,
Chem. Phys. Lett.
284
,
47
(
1998
).
64.
F.
Neese
,
T.
Petrenko
,
D.
Ganyushin
, and
G.
Olbrich
,
Coord. Chem. Rev.
205
,
288
(
2007
).
65.
S.
Grimme
and
M.
Waletzke
,
J. Chem. Phys.
111
,
5645
(
1999
).
66.
F.
Neese
,
J. Chem. Phys.
119
,
9428
(
2003
).
67.
S.
Grimme
and
E. I.
Izgorodiana
, RICC, a coupled-cluster program using the RI approximation, University Münster,
2007
.
68.
R.
Ahlrichs
,
M.
Bär
,
H.-P.
Baron
 et al, TURBOMOLE, Version 5.7, Universität Karlsruhe,
2005
(see also http://www.turbomole.com).
69.
F.
Neese
, ORCA, an ab initio, density functional and semiempirical program package, University Bonn,
2007
.
70.
O.
Vahtras
,
J.
Almlöf
, and
M. W.
Feyereisen
,
Chem. Phys. Lett.
213
,
514
(
1993
).
71.
F.
Neese
and
G.
Olbrich
,
Chem. Phys. Lett.
362
,
170
(
2002
).
72.
F.
Weigend
and
M.
Häser
,
Theor. Chem. Acc.
97
,
331
(
1997
).
73.
A.
Schäfer
,
C.
Huber
, and
R.
Ahlrichs
,
J. Chem. Phys.
100
,
5829
(
1994
).
74.
F.
Furche
and
D.
Rappoport
, in
Theoretical and Computational Chemistry
, edited by
M.
Olivuccii
(
Elsevier
,
Amsterdam
,
2005
), Vol.
16
.
75.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
76.
The basis sets are available from the TURBOMOLE homepage via the FTP server button (in the subdirectories basen, jbasen, and cbasen) (see http://www.turbomole.com).
77.
A.
Schäfer
,
H.
Horn
, and
R.
Ahlrichs
,
J. Chem. Phys.
97
,
2571
(
1992
).
78.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
79.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
80.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
,
J. Chem. Phys.
116
,
3175
(
2002
).
81.
M.
Parac
and
S.
Grimme
,
J. Phys. Chem. A
106
,
6844
(
2002
).
82.
M.
Dierksen
and
S.
Grimme
,
J. Chem. Phys.
120
,
3544
(
2004
).
83.
H.
Koch
,
O.
Christiansen
,
P.
Jorgensen
, and
J.
Olsen
,
Chem. Phys. Lett.
244
,
75
(
1995
).
84.
O.
Christiansen
,
H.
Koch
,
P.
Jorgensen
, and
J.
Olsen
,
Chem. Phys. Lett.
256
,
185
(
1996
).
85.
J. R.
Platt
,
J. Chem. Phys.
17
,
484
(
1949
).
86.
J. B.
Birks
,
Photophysics of Aromatic Molecules
(
Wiley
,
London
,
1970
).
87.
M.
Head-Gordon
,
D.
Maurice
, and
M.
Oumi
,
Chem. Phys. Lett.
246
,
114
(
1995
).
88.
F.
Aquilante
,
K. P.
Jensen
, and
B. O.
Roos
,
Chem. Phys. Lett.
380
,
689
(
2003
).
89.
P.
Zhang
and
K.
Morokuma
,
Chem. Phys. Lett.
367
,
482
(
2003
).
90.
K.
Nakanishi
,
N.
Berova
, and
R. W.
Woody
,
Circular Dichroism: Principles and Applications
(
VCH
,
New York
,
1994
).
91.
M.
Pecul
and
K.
Ruud
,
The Ab Initio Calculation of Optical Rotation and Electronic Circular Dichroism
,
Advances in Quantum Chemistry
, Vol.
50
(
Elsevier
,
San Diego
,
2005
).
92.
T. D.
Crawford
,
Theor. Chem. Acc.
115
,
227
(
2006
).
93.
F.
Furche
,
R.
Ahlrichs
,
C.
Wachsmann
,
E.
Weber
,
A.
Sobanski
,
F.
Vögtle
, and
S.
Grimme
,
J. Am. Chem. Soc.
122
,
1717
(
2000
).
94.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
95.
S.
Grimme
,
F.
Furche
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
361
,
321
(
2002
).
96.
W. S.
Brickell
,
A.
Brown
,
C. M.
Kemp
, and
S. F.
Mason
,
J. Chem. Soc. A
1971
,
756
.
97.
Y. S.
Sohn
,
D. N.
Hendrickson
, and
H. B.
Gray
,
J. Am. Chem. Soc.
93
,
3603
(
1971
).
98.
F.
Neese
(unpublished).
99.
D.
Jacquemin
,
E. A.
Perpete
,
G.
Scalmani
,
M. J.
Frisch
,
R.
Kobayashi
, and
C.
Adamo
,
J. Chem. Phys.
126
,
144105
(
2007
).
100.
M.
Schreiber
,
V.
Bu
, and
M. P.
Fülscher
,
Phys. Chem. Chem. Phys.
3
,
3906
(
2001
).
101.
Ch.
Bulliard
,
M.
Allan
,
G.
Wirtz
,
E.
Haselbach
,
K. A.
Zachariasse
,
N.
Detzer
, and
S.
Grimme
,
J. Phys. Chem. A
103
,
7766
(
1999
).
102.
J. P.
Doering
,
J. Chem. Phys.
51
,
2866
(
1969
).
103.
I. C.
Walker
,
M. H.
Palmer
, and
A.
Hopkirk
,
Chem. Phys.
141
,
365
(
1990
).
104.
A.
Mosher
,
W. M.
Flicker
, and
A.
Kuppermann
,
Chem. Phys. Lett.
19
,
332
(
1973
).
105.
W.
Flicker
,
A.
Mosher
, and
A.
Kuppermann
,
Chem. Phys.
30
,
307
(
1978
).
106.
D. G.
Wilden
and
J.
Comer
,
J. Phys. B
13
,
1009
(
1980
).
107.
N.
Walzl
,
C. F.
Koerting
, and
A.
Kuppermann
,
J. Chem. Phys.
87
,
3796
(
1987
).
108.
Z.-L.
Cai
and
J. R.
Reimers
,
J. Phys. Chem. A
104
,
8389
(
2000
).
109.
K. P.
Huber
and
G.
Herzberg
,
Constants of Diatomic Molecules
,
Molecular Spectra and Molecular Structure
Vol.
4
(
Van Nostrand
,
Princeton, NJ
,
1979
).
110.
T.-K.
Ha
and
J.
Oth
,
J. Chem. Phys.
85
,
1438
(
1986
).
111.
M. J.
Bramwell
,
D. M.
Rogers
,
J. J. W.
McDouall
, and
J. C.
Whitehead
,
Chem. Phys. Lett.
331
,
483
(
2000
).
112.
H. E.
Hunziker
,
H.
Kneppe
,
A. D.
McLean
,
P.
Siegbatm
, and
H. R.
Wendt
,
Can. J. Chem.
61
,
993
(
1983
).
113.
E.
Salama
and
L. J.
Ailamandola
,
J. Chem. Phys.
94
,
6964
(
1991
).
You do not currently have access to this content.