We have recently introduced a model of the dispersion interaction based on the position-dependent dipole moment of the exchange hole [J. Chem. Phys.122, 154104 (2005)]. The original derivation, involving simple dipole-induced-dipole electrostatics, was somewhat heuristic, however, and lacking in rigor. Here we present a much more satisfying derivation founded on second-order perturbation theory in the closure approximation and a semiclassical evaluation of the relevant interaction integrals. Expressions for C6, C8, and C10 dispersion coefficients are obtained in a remarkably straightforward manner. Their values agree very well with ab initio reference data on dispersion coefficients between the atoms H, He, Ne, Ar, Kr, and Xe. We also highlight the importance of the exchange-hole contribution to the dispersion coefficients, especially to C6.

1.
A. D.
Becke
and
E. R.
Johnson
,
J. Chem. Phys.
122
,
154104
(
2005
).
2.
A. D.
Becke
and
E. R.
Johnson
,
J. Chem. Phys.
124
,
014104
(
2006
).
3.
A. D.
Becke
and
E. R.
Johnson
,
J. Chem. Phys.
123
,
154101
(
2005
).
4.
E. R.
Johnson
and
A. D.
Becke
,
J. Chem. Phys.
124
,
174104
(
2006
).
5.
E. R.
Johnson
and
A. D.
Becke
,
Chem. Phys. Lett.
432
,
600
(
2006
).
6.
A. D.
Becke
and
E. R.
Johnson
,
J. Chem. Phys.
127
,
124108
(
2007
).
7.
J. G.
Angyan
,
J. Chem. Phys.
127
,
024108
(
2007
).
8.
A.
Dalgarno
and
W. D.
Davison
,
Adv. At. Mol. Phys.
2
,
1
(
1966
). Note that the value of λ(1,3) on p. 6 of this reference is in error. Its value should be 43, not 45.
The Self-Consistent Field for Molecules and Solids
,
Quantum Theory of Molecules and Solids
Vol.
4
(
McGraw-Hill
,
New York
,
1974
).
11.
P. W.
Atkins
and
R. S.
Friedman
,
Molecular Quantum Mechanics
, 3rd ed. (
Oxford University Press
,
New York
,
1997
).
12.
A. J.
Stone
,
The Theory of Intermolecular Forces
(
Clarendon
,
Oxford
,
1996
), Appendix F.
13.
CRC Handbook of Chemistry and Physics (
CRC
,
Boca Raton, FL
,
2003
).
14.
A. D.
Becke
,
Int. J. Quantum Chem., Quantum Chem. Symp.
23
,
599
(
1989
);
A. D.
Becke
and
R. M.
Dickson
,
J. Chem. Phys.
92
,
3610
(
1990
). Note that the capabilities of the NUMOL program now include numerical Hartree-Fock calculations (unpublished).
15.
A. J.
Thakkar
,
H.
Hetterna
, and
P. E. S.
Wormer
,
J. Chem. Phys.
97
,
3252
(
1992
);
K. T.
Tang
,
J. M.
Norbeck
, and
P. R.
Certain
,
J. Chem. Phys.
64
,
3063
(
1976
);
W.
Rijks
and
P. E. S.
Wormer
,
J. Chem. Phys.
88
,
5704
(
1988
).
16.
F.
Mulder
,
G. F.
Thomas
, and
W. J.
Meath
,
Mol. Phys.
41
,
249
(
1980
).
You do not currently have access to this content.