We report hybrid Monte Carlo molecular simulation results on the crystallization of aluminum from the supercooled liquid. We simulate the entire crystallization process at P=1atm and at temperatures 20% and 15% below the melting temperature. We demonstrate that crystallization takes place according to the same mechanism for the two degrees of supercooling considered in this work. We show that both nucleation and growth proceed into a random mixing of the hexagonal close packed structure and of the face centered cubic (fcc) phase, with a predominance of the stable fcc form. The concentration of icosahedral (Ih)-like atoms in the supercooled liquid is found to remain constant throughout nucleation and growth, showing that Ih-like atoms do not play an active role in the crystallization process. We also find that the crystallization mechanism of aluminum differs from that observed for simple fluids. While nucleation of simple fluids first proceeds into the metastable body centered cubic (bcc) phase, the fraction of bcc-like atoms in aluminum crystallites always remains very low.

1.
J.
Bernstein
,
Polymorphism in Molecular Crystals
(
Oxford University Press
,
Oxford
,
2002
).
2.
P. R.
ten Wolde
,
M. J.
Ruiz-Montero
, and
D.
Frenkel
,
Phys. Rev. Lett.
75
,
2714
(
1995
).
3.
F.
Trudu
,
D.
Donadio
, and
M.
Parrinello
,
Phys. Rev. Lett.
97
,
105701
(
2006
).
4.
C.
Desgranges
and
J.
Delhommelle
,
J. Am. Chem. Soc.
128
,
10368
(
2006
).
5.
C.
Desgranges
and
J.
Delhommelle
,
Phys. Rev. Lett.
98
,
235502
(
2007
).
6.
M. S. G.
Razul
,
J. G.
Hendry
, and
P. G.
Kusalik
,
J. Chem. Phys.
123
,
204722
(
2005
).
7.
A. W.
Jasper
,
N. E.
Schultz
, and
D. G.
Truhlar
,
J. Phys. Chem. B
109
,
3915
(
2005
).
8.
D.
Bhatt
,
N. E.
Schultz
,
A. W.
Jasper
,
J. I.
Siepmann
, and
D. G.
Truhlar
,
J. Phys. Chem. B
110
,
26135
(
2006
).
9.
D.
Bhatt
,
A. W.
Jasper
,
N. E.
Schultz
,
J. I.
Siepmann
, and
D. G.
Truhlar
,
J. Am. Chem. Soc.
128
,
4224
(
2006
).
10.
D.
Turnbull
,
J. Appl. Phys.
21
,
1022
(
1950
).
11.
T.
Schenk
,
D.
Holland-Moritz
,
V.
Simonet
,
R.
Belissent
, and
D. M.
Herlach
,
Phys. Rev. Lett.
89
,
075507
(
2002
).
12.
T. H.
Kim
and
K. F.
Kelton
,
J. Chem. Phys.
126
,
054513
(
2007
).
13.
K. F.
Kelton
,
G. W.
Lee
,
A. K.
Gangopadhyay
,
R. W.
Hyers
,
T. J.
Rathz
,
J. R.
Rogers
,
M. B.
Robinson
, and
D. S.
Robinson
,
Phys. Rev. Lett.
90
,
195504
(
2003
).
14.
J.
Mei
and
J. W.
Davenport
,
Phys. Rev. B
46
,
21
(
1992
).
15.
M. S.
Daw
and
M. I.
Baskes
,
Phys. Rev. Lett.
85
,
1285
(
1983
).
16.
P. R.
ten Wolde
,
M. J.
Ruiz-Montero
, and
D.
Frenkel
,
J. Chem. Phys.
104
,
9932
(
1996
).
17.
G. M.
Torrie
and
J. P.
Valleau
,
Chem. Phys. Lett.
28
,
578
(
1974
).
18.
P. J.
Steinhardt
,
D. R.
Nelson
, and
M.
Ronchetti
,
Phys. Rev. B
28
,
784
(
1983
).
19.
C.
Desgranges
and
J.
Delhommelle
,
J. Am. Chem. Soc.
128
,
15104
(
2006
).
20.
C.
Desgranges
and
J.
Delhommelle
,
J. Am. Chem. Soc.
129
,
7012
(
2007
).
21.
B.
Mehlig
,
D. W.
Heerman
, and
B. M.
Forrest
,
Phys. Rev. B
45
,
679
(
1992
).
22.
J. M.
Leyssale
,
J.
Delhommelle
, and
C.
Millot
,
J. Am. Chem. Soc.
126
,
12286
(
2004
).
23.
J. M.
Leyssale
,
J.
Delhommelle
, and
C.
Millot
,
J. Chem. Phys.
122
,
104510
(
2005
).
24.
C.
Desgranges
and
J.
Delhommelle
,
J. Chem. Phys.
126
,
054501
(
2007
).
25.
C.
Desgranges
and
J.
Delhommelle
,
J. Phys. Chem. B
111
,
1465
(
2007
).
26.
P.
Attard
,
J. Chem. Phys.
116
,
9616
(
2002
).
27.
H. C.
Andersen
,
J. Chem. Phys.
72
,
2384
(
1980
).
28.
S.
Auer
and
D.
Frenkel
,
J. Phys.: Condens. Matter
3
,
873
(
2003
).
29.
U.
Gasser
,
E. R.
Weeks
,
A.
Schofield
,
P. N.
Pusey
, and
D. A.
Weitz
,
Science
292
,
258
(
2001
).
30.
S.
Alexander
and
J. P.
McTague
,
Phys. Rev. Lett.
41
,
702
(
1978
).
31.
W.
Klein
and
F.
Leyvraz
,
Phys. Rev. Lett.
57
,
2845
(
1986
).
32.
W.
Ostwald
,
Z. Phys. Chem., Stoechiom. Verwandtschaftsl.
22
,
289
(
1897
).
33.
F. C.
Frank
,
Proc. R. Soc. London, Ser. A
215
,
43
(
1952
).
You do not currently have access to this content.