We report a molecular simulation study of the mechanism by which droplets covered with a surfactant monolayer coalesce. We study a model system where the rate-limiting step in coalescence is the rupture of the surfactant film. Our simulations allow us to focus on the stages at the core of the coalescence process: the initial rupture of the two surfactant monolayers, the rearrangement of the surfactant molecules to form a channel connecting the two droplets, and the expansion of the radius of the resulting channel. For our numerical study, we made use of the dissipative particle dynamics method. We used a coarse-grained description of the oil, water, and surfactant molecules. The rupture of the surfactant film is a rare event on the molecular time scale. To enhance the sampling of the rupture of the surfactant film, we used forward flux sampling (FFS). FFS not only allows us to estimate coalescence rates, it also provides insight into the molecular structure and free energy of the “transition” state. For an oil-water-oil film without surfactant, the rupture rate decreases exponentially with increasing film thickness. The critical state is different in thin and thick films: Thin films break following a large enough thickness fluctuation. Thicker films break only after a sufficiently large hole fluctuation—they can heal. Next, we designed surfactant molecules with positive, zero, and negative natural curvatures. For a water film between two surfactant-covered oil droplets, the rupture rate is highest when the surfactant has a negative natural curvature, lowest when it has zero natural curvature, and lying in between when it has a positive natural curvature. This nonmonotonic variation with curvature stems from two effects: First, the surfactants with a large absolute value of the natural curvature have lower interfacial tension and bending rigidity. This promotes the interfacial fluctuations required to nucleate a channel. Second, the sign of the natural curvature determines whether there is a critical channel radius at which the channel free energy has a maximum. The latter is in agreement with the hole-nucleation theory of Kabalnov and Wennerström [Langmuir12, 276 (1996)]. Our simulations seriously overestimate the relative stability of surfactant free emulsions. We argue that this is due to the fact that our model does not allow for nanobubble formation and capillary evaporation—processes that are presumably of key importance in the coalescence of surfactant-free emulsions.

1.
J.
Sjöblom
,
Emulsions and Emulsion Stability
(
Dekker
,
New York
,
1996
).
2.
M. J.
Rosen
,
Surfactants and Interfacial Phenomena
, 2nd ed. (
Wiley
,
New York
,
1989
).
3.
R. D.
Groot
and
P. B.
Warren
,
J. Chem. Phys.
107
,
4423
(
1997
).
4.
R. D.
Groot
and
T. J.
Madden
,
J. Chem. Phys.
108
,
8713
(
1998
).
5.
C. J.
Wijmans
,
B.
Smit
, and
R. D.
Groot
,
J. Chem. Phys.
114
,
7644
(
2001
).
6.
L.
Rekvig
,
M.
Kranenburg
,
J.
Vreede
,
B.
Hafskjold
, and
B.
Smit
,
Langmuir
19
,
8195
(
2003
).
7.
L.
Rekvig
,
B.
Hafskjold
, and
B.
Smit
,
J. Chem. Phys.
120
,
4897
(
2004
).
8.
R. D.
Groot
and
K.
Rabone
,
Biophys. J.
81
,
725
(
2001
).
9.
J. C.
Shillcock
and
R.
Lipowsky
,
J. Phys. Chem.
117
,
5048
(
2002
).
10.
M.
Kranenburg
,
M.
Venturoli
, and
B.
Smit
,
J. Phys. Chem. B
107
,
11491
(
2003
).
11.
R.
Pool
and
P. G.
Bolhuis
,
Phys. Chem. Chem. Phys.
8
,
941
(
2006
).
12.
M.
Laradji
and
P. B.
Sunil Kumar
,
Phys. Rev. Lett.
93
,
198105
(
2004
).
13.
J.
Koplik
and
J. R.
Banavar
,
Science
257
,
1664
(
1992
).
14.
S.
Murad
and
C. K.
Law
,
Mol. Phys.
96
,
81
(
1999
).
15.
M. J.
Stevens
,
J. H.
Hoh
, and
T. B.
Woolf
,
Phys. Rev. Lett.
91
,
188102
(
2003
).
16.
L.
Rekvig
,
B.
Hafskjold
, and
B.
Smit
,
Langmuir
20
,
11583
(
2004
).
17.
R. J.
Allen
,
P. B.
Warren
, and
P. R.
ten Wolde
,
Phys. Rev. Lett.
94
,
018104
(
2005
).
18.
R. J.
Allen
,
D.
Frenkel
, and
P. R.
ten Wolde
,
J. Chem. Phys.
124
,
024102
(
2006
).
19.
R. J.
Allen
,
D.
Frenkel
, and
P. R.
ten Wolde
,
J. Chem. Phys.
124
,
194111
(
2006
).
20.
B.
Deminiere
,
A.
Colin
,
F.
Leal-Calderon
,
J. F.
Muzy
, and
J.
Bibette
,
Phys. Rev. E
82
,
229
(
1999
).
21.
V.
Schmitt
and
F.
Leal-Calderon
,
Europhys. Lett.
67
,
662
(
2004
).
22.
W.
Helfrich
,
Z. Naturforsch. C
28
,
693
(
1973
).
23.
J. N.
Israelachvili
,
Colloids and Surfaces A-Physicochemical and Engineering Aspects
91
,
1
(
1994
).
24.
A.
Kabalnov
and
H.
Wennerström
,
Langmuir
12
,
276
(
1996
).
25.
A.
Kabalnov
and
J.
Weers
,
Langmuir
12
,
1931
(
1996
).
26.
P. J.
Hoogerbrugge
and
J. M. V. A.
Koelman
,
Europhys. Lett.
19
,
155
(
1992
).
27.
P.
Español
and
P. B.
Warren
,
Europhys. Lett.
30
,
191
(
1995
).
28.
E. A. J. F.
Peters
,
Europhys. Lett.
66
,
311
(
2004
).
29.
30.
R. D.
Groot
,
Langmuir
16
,
7493
(
2000
).
31.
C.
Valeriani
,
R. J.
Allen
,
M. J.
Morelli
,
D.
Frenkel
, and
P. R.
ten Wolde
,
J. Chem. Phys.
127
,
114109
(
2007
).
32.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulations: From Algorithms to Applications
, 2nd ed. (
Academic
,
San Diego, CA
,
2002
).
33.
I. B.
Ivanov
,
B.
Radoev
,
E.
Manev
, and
A.
Scheludko
,
Trans. Faraday Soc.
66
,
1262
(
1970
).
34.
J. J.
Jasper
,
J. Phys. Chem. Ref. Data
1
,
841
(
1972
).
35.
K.
Lum
and
A.
Luzar
,
Phys. Rev. E
56
,
6283
(
1997
).
36.
K.
Lum
,
D.
Chandler
, and
J. D.
Weeks
,
J. Phys. Chem. B
103
,
4570
(
1999
).
37.
S.
Zeppieri
,
J.
Rodriguez
, and
A. L. L.
de Ramos
,
J. Chem. Eng. Data
46
,
1086
(
2001
).
38.
S.
Singh
,
J.
Houston
,
F.
van Swol
, and
C. J.
Brinker
,
Nature (London)
442
,
526
(
2006
).
39.
E. E.
Meyer
,
K. J.
Rosenberg
, and
J.
Israelachvili
,
Proc. Natl. Acad. Sci. U.S.A.
24
,
15739
(
2006
).
40.
R. M.
Pashley
,
J. Phys. Chem. B
107
,
1714
(
2003
).
You do not currently have access to this content.