The transport of biomolecules across cell boundaries is central to cellular function. While structures of many membrane channels are known, the permeation mechanism is known only for a select few. Molecular dynamics (MD) is a computational method that can provide an accurate description of permeation events at the atomic level, which is required for understanding the transport mechanism. However, due to the relatively short time scales accessible to this method, it is of limited utility. Here, we present a method for all-atom simulation of electric field-driven transport of large solutes through membrane channels, which in tens of nanoseconds can provide a realistic account of a permeation event that would require a millisecond simulation using conventional MD. In this method, the average distribution of the electrostatic potential in a membrane channel under a transmembrane bias of interest is determined first from an all-atom MD simulation. This electrostatic potential, defined on a grid, is subsequently applied to a charged solute to steer its permeation through the membrane channel. We apply this method to investigate permeation of DNA strands, DNA hairpins, and α-helical peptides through α-hemolysin. To test the accuracy of the method, we computed the relative permeation rates of DNA strands having different sequences and global orientations. The results of the G-SMD simulations were found to be in good agreement in experiment.

1.
S.
Bhakdi
and
J.
Tranum-Jensen
,
Microbiol. Rev.
55
,
733
(
1991
).
2.
J. J.
Kasianowicz
,
E.
Brandin
,
D.
Branton
, and
D. W.
Deamer
,
Proc. Natl. Acad. Sci. U.S.A.
93
,
13770
(
1996
).
3.
M.
Akenson
,
D.
Branton
,
J. J.
Kasianowicz
,
E.
Brandin
, and
D. W.
Deamer
,
Biophys. J.
77
,
3227
(
1999
).
4.
S. M.
Bezrukov
,
J. Membr. Biol.
174
,
1
(
2000
).
5.
L-Q.
Gu
,
O.
Braha
,
S.
Conlan
,
S.
Cheley
, and
H.
Bayley
,
Nature
398
,
686
(
1999
).
6.
O.
Braha
 et al,
Nat. Biotechnol.
18
,
1005
(
2000
).
7.
X. F.
Kang
,
S.
Cheley
,
X. Y.
Guan
, and
H.
Bayley
,
J. Am. Chem. Soc.
128
,
10684
(
2006
).
8.
J. S. L.
Movileanu
,
J. P.
Schmittschmitt
, and
H.
Bayley
,
Biophys. J.
89
,
1030
(
2005
).
9.
W.
Vercoutere
,
S.
Winters-Hilt
,
H.
Olsen
,
D.
Deamer
,
D.
Haussler
, and
M.
Akeson
,
Nat. Biotechnol.
19
,
248
(
2001
).
10.
H.
Wang
,
J. E.
Dunning
,
A. P. H.
Huang
,
J. A.
Nyamwanda
, and
D.
Branton
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
13472
(
2004
).
11.
J. J.
Kasianowicz
,
S. E.
Henrickson
,
H. H.
Weetall
, and
B.
Robertson
,
Anal. Chem.
73
,
2268
(
2001
).
12.
S.
Winters-Hilt
and
M.
Akeson
,
DNA Cell Biol.
23
,
675
(
2004
).
13.
C.
Tropini
and
A.
Marziali
,
Biophys. J.
95
,
1632
(
2007
).
14.
B.
Hornblower
,
A.
Coombs
,
R. D.
Whitaker
,
A.
Kolomeisky
,
S. J.
Picone
,
A.
Meller
, and
M.
Akeson
,
Nat. Mater.
4
,
315
(
2007
).
15.
A.
Meller
,
L.
Nivon
,
E.
Brandin
,
J.
Golovchenko
, and
D.
Branton
,
Proc. Natl. Acad. Sci. U.S.A.
97
,
1079
(
2000
).
16.
N.
Ashkenasy
,
J.
Sánchez-Quesada
,
H.
Bayley
, and
M. R.
Ghadiri
,
Angew. Chem. Int. Ed. Engl.
44
,
1401
(
2005
).
17.
Y.
Astier
,
O.
Braha
, and
H.
Bayley
,
J. Am. Chem. Soc.
128
,
1705
(
2006
).
18.
D.
Deamer
and
D.
Branton
,
Acc. Chem. Res.
35
,
817
(
2002
).
19.
H.
Bayley
,
Curr. Opin. Chem. Biol.
10
,
628
(
2006
).
20.
B. L.
de Groot
and
H.
Grubmüller
,
Science
294
,
2353
(
2001
).
21.
E.
Tajkhorshid
,
P.
Nollert
,
M. Ø.
Jensen
,
L. J. W.
Miercke
,
J.
O'Connell
,
R. M.
Stroud
, and
K.
Schulten
,
Science
296
,
525
(
2002
).
22.
B.
Ilan
,
E.
Tajkhorshid
,
K.
Schulten
, and
G. A.
Voth
,
Proteins: Struct., Funct., Genet.
55
,
223
(
2004
).
23.
S.
Bernèche
and
B.
Roux
,
Nature
414
,
73
(
2001
).
24.
W.
Im
and
B.
Roux
,
J. Mol. Biol.
319
,
1177
(
2002
).
25.
C.
Domene
,
P. J.
Bond
, and
M. S. P.
Sansom
,
Adv. Protein Chem.
66
,
159
(
2003
).
26.
T.
Allen
,
O.
Andersen
, and
B.
Roux
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
117
(
2004
).
27.
L.
Monticelli
,
K.
Robertson
,
J.
MacCallum
, and
D.
Tieleman
,
FEBS Lett.
564
,
325
(
2004
).
28.
S.
Noskov
,
S.
Berneche
, and
B.
Roux
,
Nature
431
,
830
(
2004
).
29.
K. M.
Robertson
and
D. P.
Tieleman
,
FEBS Lett.
528
,
53
(
2002
).
30.
M.
Ceccarelli
,
C.
Danelon
,
A.
Laio
, and
M.
Parrinello
,
Biophys. J.
87
,
58
(
2004
).
31.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
New York
,
1987
).
32.
J.
Mathé
,
A.
Aksimentiev
,
D. R.
Nelson
,
K.
Schulten
, and
A.
Meller
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
12377
(
2005
).
33.
J. C.
Phillips
,
R.
Braun
,
W.
Wang
,
J.
Gumbart
,
E.
Tajkhorshid
,
E.
Villa
,
C.
Chipot
,
R. D.
Skeel
,
L.
Kalé
, and
K.
Schulten
,
J. Comput. Chem.
26
,
1781
(
2005
).
34.
A.
Aksimentiev
and
K.
Schulten
,
Biophys. J.
88
,
3745
(
2005
).
35.
B.
Isralewitz
,
S.
Izrailev
, and
K.
Schulten
,
Biophys. J.
73
,
2972
(
1997
).
36.
H.
Grubmüller
,
B.
Heymann
, and
P.
Tavan
,
Science
271
,
997
(
1996
).
37.
S. -J.
Marrink
,
O.
Berger
,
P.
Tieleman
, and
F.
Jähnig
,
Biophys. J.
74
,
931
(
1998
).
38.
C.
Jarzynski
,
Phys. Rev. Lett.
78
,
2690
(
1997
).
39.
S.
Park
and
K.
Schulten
,
J. Chem. Phys.
120
,
5946
(
2004
).
40.
Y.
Kong
,
Y.
Shen
,
T. E.
Warth
, and
J.
Ma
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
5999
(
2002
).
41.
C.
Chen
and
E.
Peng
,
Appl. Phys. Lett.
82
,
1308
(
2003
).
42.
A.
Milchev
,
K.
Binder
, and
A.
Bhattacharya
,
J. Chem. Phys.
121
,
6042
(
2004
).
43.
S.
Kotev
and
A.
Kolomeisky
,
J. Chem. Phys.
125
,
084906
(
2006
).
44.
M.
Muthukumar
and
C. Y.
Kong
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
5273
(
2006
).
45.
Y.
Wang
,
K.
Schulten
, and
E.
Tajkhorshid
,
Rev. Fac. Cienc. Med. Univ. Nac. Cordoba
13
,
1107
(
2005
).
46.
J.
Gumbart
and
K.
Schulten
,
Biophys. J.
90
,
2356
(
2006
).
47.
A.
Aksimentiev
,
J. B.
Heng
,
G.
Timp
, and
K.
Schulten
,
Biophys. J.
87
,
2086
(
2004
).
48.
L.
Zhang
and
J.
Hermans
,
Proteins: Struct., Funct., Genet.
24
,
433
(
1996
).
49.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
50.
J. B.
Heng
,
A.
Aksimentiev
,
C.
Ho
,
P.
Marks
,
Y. V.
Grinkova
,
S.
Sligar
,
K.
Schulten
, and
G.
Timp
,
Biophys. J.
90
,
1098
(
2006
).
51.
Polygen Corporation, 200 Fifth Ave., Waltham, MA 02254, QUANTA, 1988.
52.
P. F.
Batcho
,
D. A.
Case
, and
T.
Schlick
,
J. Chem. Phys.
115
,
4003
(
2001
).
53.
W. D.
Cornell
,
P.
Cieplak
,
C. I.
Bayly
,
I. R.
Gould
,
K. M.
Merz
,
D. M.
Ferguson
,
D. C.
Spellmeyer
,
T.
Fox
,
J. W.
Caldwell
, and
P. A.
Kollman
,
J. Am. Chem. Soc.
117
,
5179
(
1995
).
54.
A. D.
MacKerell
, Jr.
,
D.
Bashford
,
M.
Bellott
,
R. L.
Dunbrack
, Jr.
,
J. D.
Evanseck
,
M. J.
Field
,
S.
Fischer
,
J.
Gao
,
H.
Guo
,
S.
Ha
,
D.
Joseph-McCarthy
,
L.
Kuchnir
,
K.
Kuczera
,
F. T. K.
Lau
,
C.
Mattos
,
S.
Michnick
,
T.
Ngo
,
D. T.
Nguyen
,
B.
Prodhom
,
W. E.
Reiher
, III
,
B.
Roux
,
M.
Schlenkrich
,
J. C.
Smith
,
R.
Stote
,
J.
Straub
,
M.
Watanabe
,
J.
Wiórkiewicz-Kuczera
,
D.
Yin
, and
M.
Karplus
,
J. Phys. Chem. B
102
,
3586
(
1998
).
55.
A. T.
Brünger
,
X-PLOR, Version 3.1: A System for X-ray Crystallography and NMR
(
The Howard Hughes Medical Institute and Department of Molecular Biophysics and Biochemistry
,
Yale University
,
1992
).
56.
G. J.
Martyna
,
D. J.
Tobias
, and
M. L.
Klein
,
J. Chem. Phys.
101
,
4177
(
1994
).
57.
P. S.
Crozier
,
D.
Henderson
,
R. L.
Rowley
, and
D. D.
Busath
,
Biophys. J.
81
,
3077
(
2001
).
58.
See EPAPS Document No. E-JCPSA6-127-508733 for details of all simulations, information on an arrested translocation, and movies of DNA and peptide permeation. This document can be reached through a direct link in the online article's HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html.
59.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graph.
14
,
33
(
1996
).
60.
D. K.
Lubensky
and
D. R.
Nelson
,
Biophys. J.
77
,
1824
(
1999
).
61.
T.
Ambjörnsson
,
S. P.
Apell
,
Z.
Konkoli
,
E. A. D.
Marzio
, and
J. J.
Kasianowicz
,
Biophys. J.
117
,
4063
(
2002
).
62.
E.
Slonkina
and
A. B.
Kolomeisky
,
J. Chem. Phys.
118
,
7112
(
2003
).
63.
O.
Flomenborn
and
J.
Klafter
,
Biophys. J.
86
,
3576
(
2004
).
64.
S.
Bransburg-Zabary
,
E.
Nachliel
, and
M.
Gutman
,
Biophys. J.
83
,
3001
(
2002
).
65.
S.
Bransburg-Zabary
,
E.
Nachliel
, and
M.
Gutman
,
Solid State Ionics
168
,
235
(
2004
).

Supplementary Material

You do not currently have access to this content.